When you find yourself face-to-face with the "ambiguous case" solve as if there ARE two triangles.

I know this is the ambiguous case because I'm given SSA (the angle is not included between the two sides).

$\angle A = 17^{\circ}; a = 5 \& b = 8$	c_1 17° 8 C_1 B_1 5 C_1	c_2 17° 8 C_2 C_2
Use the Law of Sines to find $m \angle B$.	$\frac{\sin 17^{\circ}}{5} = \frac{\sin B}{8}$ $\sin B = \frac{8 \sin 17^{\circ}}{5} = 0.46779$ $B = \sin^{-1} 0.46779$	
Sine is positive in Quadrants I & II, so there's a second possible measure for $\angle B$, find it by subtracting from 180°.	$B_1 = 27.9^{\circ}$	$B_2 = 180^\circ - 27.9^\circ = 152.1^\circ$
The sum of all 3 angles of any triangle is 180°. Find the third angle by subtracting the two known angles from 180°.	$C_1 = 180 - 17 - 27.9 = 135.1^\circ$	$C_2 = 180 - 17 - 152.1 = 10.9^{\circ}$ There IS a second triangle.
Finish solving the triangle using the Law of Sines to find side $c_1 \& c_2$.	$\frac{\sin 17^{\circ}}{5} = \frac{\sin 135.1^{\circ}}{c_1}$ $c_1 \cdot \sin 17^{\circ} = 5 \sin 135.1^{\circ}$ $c_1 = \frac{5 \sin 135.1^{\circ}}{\sin 17^{\circ}} \approx 12.07$	$\frac{\sin 17^{\circ}}{5} = \frac{\sin 10.9^{\circ}}{c_2}$ $c_2 \cdot \sin 17^{\circ} = 5 \sin 10.9^{\circ}$ $c_2 = \frac{5 \sin 10.9^{\circ}}{\sin 17^{\circ}} \approx 3.23$