When you find yourself face-t-i-ace with the "ambiguluus case" solve as it there ARE two triangles.

I know this is the ambiguous case because I'm given SSA (the angle is not included between the two sides).

$\angle A=17^{\circ} ; a=5 \& b=8$	
Use the Law of Sines to find $m \angle B$.	$\begin{gathered} \frac{\sin 17^{\circ}}{5}=\frac{\sin B}{8} \\ \sin B=\frac{8 \sin 17^{\circ}}{5}=0.46779 \\ B=\sin ^{-1} 0.46779 \end{gathered}$
Sine is positive in Quadrants I \& II, so there's a second possible measure for $\angle B$, find it by subtracting from 180°.	$B_{1}=27.9^{\circ} \quad B_{2}=180^{\circ}-27.9^{\circ}=152.1^{\circ}$
The sum of all 3 angles of any triangle is 180°. Find the third angle by subtracting the two known angles from 180°.	$C_{1}=180-17-27.9=135.1^{\circ} \quad C_{2}=180-17-152.1=10.9^{\circ}$ There Is a scond triangle.
Finish solving the triangle using the Law of Sines to find side $c_{1} \& c_{2}$.	$\begin{array}{cc} \frac{\sin 17^{\circ}}{5}=\frac{\sin 135.1^{\circ}}{c_{1}} & \frac{\sin 17^{\circ}}{5}=\frac{\sin 10.9^{\circ}}{c_{2}} \\ c_{1} \cdot \sin 17^{\circ}=5 \sin 135.1^{\circ} & c_{2} \cdot \sin 17^{\circ}=5 \sin 10.9^{\circ} \\ c_{1}=\frac{5 \sin 135.1^{\circ}}{\sin 17^{\circ}} \approx 12.07 & c_{2}=\frac{5 \sin 10.9^{\circ}}{\sin 17^{\circ}} \approx 3.23 \end{array}$

