10.2.DI PARALLELOGRAMS

- **d** Parallelograms
 - > A parallelogram is a quadrilateral with both pairs of opposite sides parallel. (definition)
 - > Parallelogram/Congruent-Parallel Side Theorem
 - If one pair of opposite sides of a quadrilateral is both congruent and parallel, then the quadrilateral is a parallelogram.

For a list of the properties of parallelograms, see page 829 of your text.

Examples

1. For each quadrilateral *QUAD*, state the property or definition that proves that *QUAD* is a parallelogram. (Refer to the "Properties of Parallelograms" on page 829 of your text.)

2. Complete each statement about *JKLM*.

$\overline{JK} \cong \underline{?}$	$\angle MLK \cong _?$
$\angle JKL \cong _?_$	$\overline{JN} \cong \underline{?}$
$\angle MNL \cong _?$	$\overline{NM} \cong _?_$

Chapter 10

EXTRA NOTE SHEET

3.	Given:	$\overline{AB} \cong \overline{CD}$
		$\overline{BC} \cong \overline{DA}$
	Prove:	ABCD is a parallelogram

Statements	Reasons
1. $\overline{AB} \cong \overline{CD}$	1. Given
2. $\overline{BC} \cong \overline{DA}$	2. Given
3. $\overline{BD} \cong \overline{BD}$	3.
4. $\triangle DAB \cong \triangle BCD$	4.
5. ∠1 ≅	5.
6. ∠4 ≅	6.
7. $\overline{AB} \parallel \overline{CD}$	7.
8. $\overline{BC} \parallel \overline{DA}$	8.
9. <i>ABCD</i> is a parallelogram	9.

4. Given: $\triangle CAR$ is isosceles w/base \overline{CR} $\overline{AC} \cong \overline{BK}$ $\angle C \cong \angle K$ Prove: BARK is a parallelogram

Statements	Reasons
1. $\triangle CAR$ is isosceles w/base \overline{CR}	1. Given
2. $\overline{AC} \cong$	2.
3. $\overline{AC} \cong \overline{BK}$	3. Given
4. $\overline{AR} \cong \overline{BK}$	4.
5. ∠ <i>C</i> ≅	5.
6. $\angle C \cong \angle K$	6. Given
7. $\angle ARC \cong \angle K$	7.
8. $\overline{AR} \parallel \overline{BK}$	8.
9. BARK is a parallelogram	9.

10.2.D2 PARALLELOGRAMS

- For a list of the properties of parallelograms, see page 829 of your text.
- Add to your properties list: *Consecutive angles of a parallelogram are supplementary.*

 $x + v = 180^{\circ}$

Examples

1. VRZA is a \square

Given: AV = 2x - 4 VR = 3y + 5 $RZ = \frac{1}{2}x + 8$ ZA = y + 12

Find:	The velues	ofrond	wand the	norimator	of VD7A
r'inu.	The values	or x and	y and the	permeter	UI VILLA

What property of	•••
parallelograms are	
you going to use?	
1 0	_

- 2. WXYZ is a \square . Find: a. a b. b c. WV d. YW e. XZ f. ZV
- 3. *FEDY* is a \square . Find the value of each variable.

What property of
parallelograms are
you going to use?

4. For the given parallelogram, set up and solve a system of equations to find the value of the variables.

10.1 Squares & Rectangles

- **a** Squares
 - > A square is a quadrilateral with four right angles and all sides congruent. (definition)
 - Area: $A = s^2$
- **a** Rectangles
 - A rectangle is a quadrilateral with opposite sides congruent and with four right angles. (definition)
 - Area: $A = bh = \ell w$

For a list of the properties of squares and rectangles, see page 828 of your text.

Examples

1. Given: *EFGH* is a square with a perimeter of 36 EH = x + 6 $\angle F = 2y - 4$

Find: x & y

The area of square EFGH

- 2. Given: Rectangle *QRST*
 - a. Set up and solve a system of equations to find the value of the variables.
 - b. Find the rectangle's base and height.

c. What is the perimeter <u>and</u> area of rectangle QRST?

10.2 & 10.3 RHOMBI & KITES

- ð Rhombi
 - > A rhombus is a quadrilateral with all sides congruent. (definition)
 - Area: $A = d_1 d_2$
 - Add to your properties list: *Consecutive angles are supplementary*.
- **ð** Kites
 - > A kite is a quadrilateral with two pairs of consecutive congruent sides with opposite sides that are not congruent. (definition)
 - Area: $A = d_1 d_2$ For a list of the properties of rhombi and kites, see page 830 of your text.

Examples

- 1. Given: Rhombus HIJK
 - a. Find the value of the variables.
 - b. What is the perimeter of rhombus *HIJK*?
 - c. Find $m \angle J \& m \angle K$.

 $\frac{2}{b^{2}} \int_{a^{2} + 6)^{c}}^{b^{2} + 3}$

2. Given: Rhombus WXYZ

XZ = 10 & WY = 24

- a. Find the value of *x*.
- b. Find the area of rhombus WXYZ.
- c. Find the perimeter of rhombus WXYZ.

3. Find the value of the variables in the kite.

4. Given: Kite *ABCD*Find the value of *x* and the perimeter of *ABCD*.

10.3.D2 TRAPEZOIDS

- **ð** Trapezoids
 - > A trapezoid is a quadrilateral with exactly one pair of parallel sides. (definition)
 - Add to your properties list: *Consecutive non-base angles are supplementary*.
 - > An isosceles trapezoid is a trapezoid with congruent non-parallel sides. (definition)

• Area:
$$A = \frac{1}{2}h(b_1 + b_2)$$

For a list of the properties of *isosceles* trapezoids, see page 831 of your text.

Examples

- 1. Given: *ABCD* is a trapezoid.
 - d. Find the value of x.
 - e. Find $m \angle A \& m \angle D$.

2. Find the length of the midsegment of the trapezoid. What is the trapezoid's area?

6t

12t

27

10

Chapter 10 EXTRA NOTE SHEET

4.	Given:	ABDE is a parallelogram
		$\triangle BCD$ is isosceles with base \overline{BC}
	Prove:	ACDE is an isosceles trapezoid

Statements	Reasons

10.4 & 10.5 INTERIOR & EXTERIOR ANGLES OF POLYGONS

d Polygons

d Interior Angles of Polygons

 \succ The sum of the measures of the interior angles of a polygon with n sides is _

• Exterior Angles of Polygons

Use the figure to answer each question.

- 1. What is the sum of the measures of $\angle 1$ & $\angle 4$? Explain your reasoning.
- 2. What is the sum of the measures of $\angle 2$ & $\angle 5$?
- 3. What is the sum of the measures of $\angle 3$ & $\angle 6$?
- 4. What is the sum of the measures of $\angle 1$, $\angle 2$, $\angle 3$, $\angle 4$, $\angle 5$, and $\angle 6$? Explain your reasoning.
- 5. What is the sum of the measures of $\angle I$, $\angle Z$, and $\angle 3$? Explain your reasoning.
- 6. What is the difference of the sum of the measures of $\angle 1$, $\angle 2$, $\angle 3$, $\angle 4$, $\angle 5$, and $\angle 6$ and the sum of the measures of $\angle 1$, $\angle 2$, and $\angle 3$? What does this demonstrate?
- 7. What is the sum of the exterior angles of any polygon?

Examples

Find the value of x in each convex polygon.

3. Given: $m \angle A = 4x + 7, m \angle B = 4x - 18, m \angle C = 5(x - 1), m \angle D = 2x + 1, \& m \angle E = 7x - 39$

Set up and solve an equation and find the value of x.

4. Set up and solve an equation to find the value of x.

- 5. If a regular polygon has 30 sides, what is the measure of (a) each interior angle? And (b) each exterior angle?
- 6. If the measure of each exterior angle of a regular polygon is 18°, how many sides does the polygon have?

10.7 CLASSIFYING QUADRILATERALS ON THE COORDINATE PLANE

FORMULAS & THE COORDINATE PLANE		
Formula	When to Use it	
Distance Formula:	To determine whether	
	 Sides are congruent 	
$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	 Diagonals are congruent 	
Midpoint Formula:	To determine	
$(x_m, y_m) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$	 The coordinates of a midpoint of a side 	
	 Whether diagonals bisect each other 	
	To determine whether	
Slope Formula: $m=rac{y_2-y_1}{x_2-x_1}$	 Opposite sides are parallel 	
	 Diagonals are perpendicular 	
	 Sides are perpendicular 	

QUADRILATERAL	Prove:
PARALLELOGRAM	 Both pairs of opposite sides are parallel (definition) Both pairs of opposite sides are congruent One pair of opposite sides are parallel and congruent Diagonals bisect each other
RECTANGLE	 Both pairs of opposite sides are congruent and all for angles are right angles (definition) Orfirst prove it's a parallelogram, and then prove The diagonals are congruent
	 Two consecutive sides are perpendicular
RHOMBUS	 All four sides are congruent (definition) Orfirst prove it's a parallelogram, and then prove The diagonals are perpendicular
Square	 All four angles are right angles and all four sides are congruent (definition) Orprove it's a rectangle AND a rhombus
TRAPEZOID	 Only one pair of sides are parallel (definition)
Isos(Eles Trapezoid	Prove it's a trapezoid AND • The non-parallel sides are congruent • The diagonals are congruent
Kite	 Two pairs of consecutive sides are congruent and the opposite sides are not congruent (definition)

Examples

1. The vertices of *JOSH* are J(-3, 1), O(3, 3), S(5, 7), & H(-1, 5). Prove that *JOSH* is a parallelogram.

2. The vertices of *KARI* are *K*(2, 1), *A*(4, 4), *R*(10, 0), & *I*(8, -3). Show that *KARI* is a rectangle.

3. Quadrilateral *JACK* has vertices J(1, -4), A(10, 2), C(8, 5), & K(2, 1). Prove that *JACK* is a trapezoid.

Chapter 10 EXTRA NOTE SHEET

Use the diagonals to determine whether a parallelogram with the given vertices is a rectangle, rhombus, or square. Give all the names that apply.

5. E(-4, -1), F(-3, 2), G(3, 0), H(2, -3)

6. The coordinates of three vertices of parallelogram *RHOM* are given. Find the coordinates of *O* so that a rhombus is formed.