	CHAPTTES 11 \& 12: CIRCLES, ARCS \mathcal{E} SECTORS Cornell Notes/Summary Sheet	Name: \qquad Period: \qquad Turn this in on the day of the test. This is an assignment grade.
Lesson 11.1: Big Ideas - What is a circle? - Line segments related to a circle: chord, diameter, secant, \& tangent - Points related to a circle: center \& point of tangency - Angles related to a circle: central angle \& inscribed angle - Arcs related to a circle: major arc, minor arc, \& semicircle See page 900 of the Chapter 11 Summary.	Your Notes	
Lesson 11.2: Big Ideas - Measure of minor arcs \& central angles - Measure of inscribed angles \& intercepted arcs - Inscribed Angle Theorem See pages $901 \& 902$ of the Chapter 11 Summary.	Your Notes	
Lesson 11.3: Big Ideas - Interior Angles of a Circle Theorem - Exterior Angles of a Circle Theorem - Tangent to a Circle Theorem See pages 903 \& 904 of the Chapter 11 Summary.	Your Notes	

Lesson 11.4: Big Ideas - Diameter-Chord Theorem - Equidistant Chord Theorem - Congruent Chord-Congruent Arc Theorem - Segment-Chord Theorem See pages 904 \& 905 of the Chapter 11 Summary.	Your Notes
Lesson 11.5: Big Ideas - Tangent Segment Theorem - Secant Segment Theorem - Secant Tangent Theorem See pages 906 \& 907 of the Chapter 11 Summary.	Your Notes
Lesson 12.1: Big Ideas - Inscribed Right TriangleDiameter Theorem - Inscribed QuadrilateralOpposite Angles Theorem - Perimeter of circumscribed polygons See pages 959 \& 960 of the Chapter 12 Summary.	Your Notes
Lesson 12.2: Big Ideas - Arc length - Radian measure See page 960 of the Chapter 12 Summary.	Your Notes
Lesson 12.3: Big Ideas - Area of sectors of a circle - Area of segments of a circle See page 961 of the Chapter 12 Summary.	Your Notes
The Equation of a Circle - Standard form of the equation of a circle	Your Notes

