Team Members:

CLOSURE

Based on your team's observations, answer the questions that follow.

Refer to Investigation 1:

1. How would the graph of $p(x)=x^{4}-2 x^{3}-x^{2}+2 x$ be similar to the graphs of $f(x), g(x) \& h(x)$? How might it be different?

Refer to Investigation 2:

2. The graph of a $7^{\text {th }}$ degree polynomial would have right-end behavior EQUAL TO/OPPOSITE (circle one) its left-end behavior, at most \qquad x-intercepts, and at most \qquad turning points.

Determine the lowest possible degree for the polynomial whose graph is shown.

Refer to Investigation 3:

7. Determine the x-intercepts of the polynomial and predict whether the graph will cross or be tangent to the x-axis:

$$
p(x)=(x-5)(x+6)^{3}(x-10)^{2}
$$

8. Match the equation with the graph. Do not use any graphing technology.
a. $y=x(x+2)^{2}(x-2)$
b. $y=x(x+2)(x-2)^{2}$
c. $y=x(x+2)(x-2)$
d. $y=x^{2}(x+2)(x-2)$

9. Match the equation with the graph. Do not use any graphing technology.
a. $y=(x-1)(x+1)(x+3)$
b. $y=x^{2}(x-2)$
c. $y=(x+2)(x-1)^{2}$
d. $y=x(x+2)(1-x)$

10. Sketch a $5^{\text {th }}$ degree polynomial that is tangent to the x-axis at $x=-3 \& x=4$, crosses the x-axis at $x=1$ and has a negative y-intercept.

What is the end behavior on the left?
What is the end behavior on the right?

