|  | TER 2.2 <br> Summary Sheet | Name: $\qquad$ <br> Period: $\qquad$ |
| :---: | :---: | :---: |
| - Systems of two (or more) linear equations <br> - Inconsistent systems <br> - Dependent systems <br> - Graphical method $\begin{gathered} x+2 y=-2 \\ 3 x-2 y=-6 \end{gathered}$ <br> The solution is $(-2,0)$. |  |  |
| * Substitution Method <br> $>$ Use when one or both equations is solved for the variable $\begin{gathered} 3 x-7 y=-14 \\ x=2 y-3 \end{gathered}$ <br> Notice that one of the equations is already solved for x . <br> Let's stick that X blob into the other equation in place of X : $\begin{aligned} 3 x-7 y & =-14 \\ x & =2 y-3 \end{aligned}$ <br> Solve the resulting equation for $y$. <br> Substitute the value of $y$ into the equation for $x$. | * Elimination Method <br> > Use when both equations are written in standard form <br> - Does addition work? <br> - Does subtraction work? <br> - Must multiply to make addition work: $\begin{gathered} 2 x-9 y=8 \\ -5 x+8 y=-20 \\ 7 \uparrow \begin{array}{l} \text { These numbers are } \\ \text { easier than the }-9 \text { and } 8 . \end{array} \end{gathered}$ <br> We want to make these $10 x$ and $-10 x$ : $\begin{gathered} 5(2 x-9 y=8) \\ 2(-5 x+8 y=-20) \end{gathered} \rightarrow \begin{aligned} & 10 x-45 y=40 \\ & -10 x+16 y=-40 \end{aligned}$ <br> Solve the resulting system for $y$ : <br> Substitute the value of $y$ into an equation \& solve for $x$. |  |

## Section 2.5 - Big Ideas

- Graphing linear inequalities in two variables
- Systems of linear inequalities
- Bounded \& unbounded regions
- Corner points/vertices
- Maximum \& minimum values
- Linear programming

$$
\begin{gathered}
y<2 x-6 \\
y>-3 x+4
\end{gathered}
$$

$$
y<2 x-6
$$

* Replace the inequality symbols with equal signs and graph the straight lines.
- Solid if: $\leq$ or $\geq$
- Dashed if: < or >
* Determine which side of each line will be shaded.
$>$ Use the test point $(0,0) \&$ shade where true.
$0<2(0)-6$
$0<-6$
False - shade on the other side of the line



## GBAPHIMTS G3013S

given slope-in+ercep+form: $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{b}$
> Plot the $\mathbf{Y}$-INTERCEPT: $(0, b)$
> From there, use the Slope, $m$, to determine a second point:

- If the SLOPE IS POSTITIE, go UP the number of units in the NUMERATOR
- If the SLOPE IS NEEATIVE, go DOWN the number of units in the NUMERATOR
- Always CORIGHT the number of units in the denominator

$$
\text { Graph } \quad y=\frac{-3}{5} x+4
$$

1 It crosses the y -axis at 4 , so we start there:
2 the slope is $\frac{-3}{5}$ so we


given standard form: $\boldsymbol{A} \boldsymbol{x}+\boldsymbol{B} \boldsymbol{y}=\boldsymbol{C}$
$>$ Find the $X$-INIERCEPT: $(x, 0)$

- Let $y=0$
- Solve for $x$.
$>$ Find the $\boldsymbol{y}$-INIERCEPT: $(0, y)$
- Let $x=0$
- Solve for $y$.
> Plot these points; connect with a line.
OR, first rewrite in SLOPE-INTERCEPT FORM

1. Move $x$-term to other side.

$$
\begin{aligned}
& 5 x-3 y=2 \\
& -5 x \quad-5 x \\
& \hline-3 y=-5 x+2
\end{aligned}
$$

2. Divide by $y$ 's

$$
\frac{-3 y}{-3}=\frac{-5 x+2}{-3}
$$

$$
y=\frac{-5 x}{-3}+\frac{2}{-3}
$$

3. Simplify.

$$
y=\frac{5}{3} x-\frac{2}{3}
$$

