\qquad

Lesson 2.1 - Linear \& Quadratic Functions \& Modeling ObJective(s)

Self-Assessment Before:
KNOWLEDGE

- Polynomial functions
- Linear functions \& their graphs
- Rate of change (average \& constant)
- Quadratic functions \& their graphs
- Standard form \& vertex form of a quadratic function
- The "vertical free-fall motion" model

DURING:

After:

SKILLS

- Identify polynomial functions
- Find equations of linear functions
- Analyze properties of linear functions: rate of change \& initial value
- Model with linear functions and linear regression
- Analyze properties of quadratic functions: axis \& vertex
- Find equations of quadratic functions
- Model with quadratic functions and quadratic regression

VOCABULARY - Use the Pre-Calculus glossary - on the Pre-Calculus Moodle page or my website to define the terms below.

Axis	
Constant rate of change	
Correlation coefficient	
Initial value of f	
Linear correlation	
Linear function	
Polynomial	
Quadratic function	
Vertex	

Lesson 2.2 - Power Functions \& Modelins

ObJECTIVE(s)

Self-Assessment	Before:
DURING:	AFTER:
KNOWLEDGE	SKILLS

Vocabulary - Use the Pre-Calculus glossary - on the Pre-Calculus Moodle page or my website to define the terms below.

Monomial function	
Power function	

Lesson 2.3-Polynomial Functions of Higher Degree \& Modeling ObJECTIVE(s)

SELF-Assessment

KNOWLEDGE

- Graphical transformations on functions
- Typical graphs of cubic and quartic functions
- Polynomial theory regarding extrema, zeros \& end behavior
- Leading term test for polynomial end behavior
- The effect of zeros of even and odd multiplicity on the graph of a polynomial

BEFORE:

SKILLS

- Relate graphs of polynomials to monomials
- Apply polynomial theory - with regards to extrema, zeros and end behavior
- Find the zeros of a polynomial function graphically or algebraically
- Sketch the graph of a factored polynomial
- Find equations of cubic functions
- Use quadratic, cubic and quartic regression

Vocabulary - Use the Pre-Calculus glossary - on the Pre-Calculus Moodle page or my website to define the terms below.

Coefficient(s)	
Multiplicity	
Term (of a polynomial)	
Zero (of a function)	

Expect an Assessment of Lessons 2.1 - 2.3
Lesson 2.4-Real Zeros of Polynomial Functions ObJECTIVE(s)

Self-Assessment Before:

KNOWLEDGE

- The Division Algorithm for Polynomials
- Synthetic division
- The Remainder Theorem
- The Factor Theorem
- Fundamental connections for polynomial functions
- The Rational Zeros Theorem

DURING:

AFTER:

SKILLS

- Divide polynomials via long division or synthetic division
- Use the Remainder Theorem to find the remainder when $f(x)$ is divided by $x-k$
- Use the Factor Theorem to determine whether a polynomial is a factor of another
- Find a polynomial function with a specific leading coefficient, given a degree and zeros
- Use the Rational Zeros Theorem to list potential rational zeros and determine which, if any, are zeros of a polynomial
- Establish bounds for the real zeros of a function f
- Find all real zeros of a function; identify as rational or irrational

VocABULARY - Use the Pre-Calculus glossary - on the Pre-Calculus Moodle page or my website to define the terms below.

Irrational zeros	
Lower bound (for real zeros)	

Rational zeros	
Synthetic division	
Upper bound (for real zeros)	

Lesson $2.5^{-C o m p l e x ~ Z e r o s ~ \& ~ t h e ~ F u n d a m e n t a l ~ T h e o r e m ~ o f ~ A l g e b r a ~}$

 Objective(s)
Self-Assessment Before:

DURING:

After:

KNOWLEDGE

- Fundamental Theorem of Algebra
- Linear Factorization Theorem
- Fundamental Polynomial

Connections (the complex case)

- Complex Conjugate Zeros Theorem

SKILLS

- Write a polynomial function in standard form: given the linear factorization; w/real coefficients from given zeros and multiplicities
- Identify the zeros and x-intercepts of the graph of a polynomial given the linear factorization
- Given a polynomial function in standard form, find all zeros (real and complex) and write a linear factorization
- Given a zero and $f(x)$, find the remaining zeros of f (x) and write a linear factorization
- Factor a polynomial function and write as a product of linear and irreducible quadratic factors w/real coefficients
- Determine the number of complex and real zeros a polynomial function has

Vocabulary - Use the Pre-Calculus glossary - on the Pre-Calculus Moodle page or my website to define the terms below.

Irreducible quadratic over the reals	

Expect an Assessment of Lessons 2.4 \& 2.5

Lesson 2.6-Graphs of Rational Functions

ObJECTIVE(s)

SELF-AsSESSMENT BEFORE: DURING: AFTER:

SKILLS

- Describe how the graph of a rational function can be obtained by transforming the graph of the reciprocal function
- Find end behavior, vertical \& slant asymptotes, (use limits to describe the corresponding behavior) x-intercepts and the y-intercept of a rational function
- Analyze graphs of rational functions

Lesson 2.7-Solving Equations in One Variable ObJECTIVE(s)

SELF-ASSESSMENT	BeFORE:	DURING:
SKILLS		
- Solve rational equations algebraically and graphically		
- Set up and solve applications of rational functions		

Lesson 2.8 - Solving Inequalities in One Variable

ObJECTIVE

Self-Assessment Before: $\underline{\text { DURING: }}$

SKILLS

- Determine the x value that cause a polynomial function to be zero, positive and negative
- Solve polynomial inequalities analytically (using a sign chart) and graphically
- Determine the values of x that cause a rational function to be zero, undefined, positive, negative
- Solve rational inequalities; solve inequalities involving radicals and absolute values
- Set up and solve applications involving rational functions and inequalities

Expect an Assessment of Lessons 2.6 - 2.8

