\qquad

3.1 EXPONENTIAL \& LOGISTIC FUNCTIONS

Objective: Evaluate Exponential Expressions and Identify and Graph Exponential \& Logistic Functions.

© Exponential Functions

Let a \& b be real number constants. An exponential function in x is a function that...

- Initial value of $f(x)$: the constant, a
- Base: b

(a)

(b)

Domain: All reals
Range: $(0, \infty)$
Continuous
No symmetry: neither even nor odd
Bounded below, but not above
No local extrema
Horizontal asymptote: $y=0$
No vertical asymptotes
If $b>1$ (see Figure 3.3a), then

- f is an increasing function,
- $\lim _{x \rightarrow-\infty} f(x)=0$ and $\lim _{x \rightarrow \infty} f(x)=\infty$.

If $0<b<1$ (see Figure 3.3b), then

- f is a decreasing function,
- $\lim _{x \rightarrow-\infty} f(x)=\infty$ and $\lim _{x \rightarrow \infty} f(x)=0$.

Objective: Identify Exponential Functions

Examples: IDENTIFYING EXPONENTIAL FUNCTIONS

Which of the following are exponential functions? For those that are, state the initial value and the base. For those that are not, explain why.

1. $y=5^{x}$
2. $y=x^{x^{1 / 2}}$

Objective: Evaluate Exponential Expressions

© Computing Exponential Function Values
When the inputs are rational numbers, use the \qquad .

- We cannot use the properties of exponents to express an exponential function's value for irrational inputs.

Examples: Computing Exponenital Function Values (for Rational Numbers)

Compute the exact value of the function for the given x-value without using a calculator.
3. $f(x)=3 \cdot 5^{x}, x=0$
4. $f(x)=-2 \cdot 3^{x}, x=2 / 3$

Objective: Write Exponential Functions

Example: Finding an Exponential function from its table of values

Determine a formula for the exponential function whose values are given.

5. | x | $f(x)$ |
| ---: | ---: |
| -2 | 6 |
| -1 | 3 |
| 0 | $3 / 2$ |
| 1 | $3 / 4$ |
| 2 | $3 / 8$ |

Objective: Analyze \& Graph Exponential \& Logistic Functions

〕 Exponential Growth \& Decay
For any exponential function $f(x)=a \cdot b^{x}$ \& any real number x,

$$
f(x+1)=b \cdot f(x)
$$

- If $a>0 \& b>1$, the function f is increasing \& is an exponential growth function.
- Base b : growth factor
- If $a>0 \& b<1, f$ is decreasing \& is an exponential decay function.
- Base b : decay factor
d The Natural Exponential Function
The Natural Base e

$$
e=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}
$$

- $\quad e \approx 2.718281828459$

Basic Function: The Natural Exponential Function

$[-4,4]$ by $[-1,5]$
FIGURE 3.5 The graph of $f(x)=e^{x}$.
$f(x)=e^{x}$
Domain: All reals
Range: $(0, \infty)$
Continuous
Increasing for all x
No symmetry
Bounded below, but not above
No local extrema
Horizontal asymptote; $y=0$
No vertical asymptotes
End behavior: $\lim _{x \rightarrow-\infty} e^{x}=0$ and $\lim _{x \rightarrow \infty} e^{x}=\infty$

© Exponential Functions \& the Base e

Any exponential function $f(x)=a \cdot b^{x}$ can be rewritten as: $f(x)=a \cdot e^{k x}$ for an appropriately chosen real number constant k.

- If $a>0 \& k>0, f(x)=a \cdot e^{k x}$ is an exponential growth function.
- If $a<0 \& k<0, f(x)=a \cdot e^{k x}$ is an exponential decay function.

Examples: EXPONENTIAL GROWTH OR DECAY?

State whether the function is an exponential growth function or exponential decay function \& describe its end behavior using limits.
6. $f(x)=3^{-2 x}$
7. $f(x)=0.5^{x}$

อ Logistic Functions \& Their Graphs

- Exponential vs. Logistic

Exponential

- Unrestricted
- Increases at an ever increasing rate
- Not bounded above

Logistic

- Restricted
- Increases, eventually levels out
- Bounded above \& below
$>$ Logistic Growth Functions
- Let a, b, c, and k be positive constraints, with $b<1$. A logistic growth function in x is a function that can written in the form:

$$
f(x)=\frac{c}{1+a \cdot b^{x}} \text { OR } f(x)=\frac{c}{1+a \cdot e^{-k x}}
$$

where the constant c is the limit to growth.

Basic Function: The Logistic Function

$[-4.7,4.7]$ by $[-0.5,1.5]$
$f(x)=\frac{1}{1+e^{-x}}$
Domain: All reals
Range: $(0,1)$
Continuous
Increasing for all x
Symmetric about ($0,1 / 2$), but neither even nor odd
Bounded below and above
No local extrema
Horizontal asymptotes: $y=0$ and $y=1$
No vertical asymptotes
End behavior: $\lim _{x \rightarrow-\infty} f(x)=0$ and $\lim _{x \rightarrow \infty} f(x)=1$

More on the Graphs of Logistic Functions

- End behavior is always described by the equations:

$$
\lim _{x \rightarrow-\infty} f(x)=0^{+} \& \lim _{x \rightarrow \infty} f(x)=c^{-}
$$

c is the limit to growth

- Bounded by their horizontal asymptotes: $y=0 \& y=c$
- Range: $(0, c)$
- Symmetric about the point of its graph with y-coordinate, $\frac{c}{2}$
- Usually not the y-intercept

Example 8: GRAPHING LOGISTIC GROWTH FUNCTIONS

Graph the function using a grapher. Find the y-intercept and the horizontal asymptotes. Is the graph symmetric about its y-intercept?
$f(x)=\frac{16}{1+3 e^{-2 x}}$

3.2 EXPONENTIAL \& LOGISTIC FUNCTION MODELS
 Objective: Analyze \& Write Exponential \& Logistic Growth and Decay Function Models

© Constant Percentage Rate \& Exponential Functions
Exponential Population Model

- If a population P is changing at a constant percentage rate r each year, then...
- Po-initial population
- r - constant percentage rate (expressed as a decimal)
- t-time (in years)

Exponential Growth Function

- $r>0$
- Growth factor: $1+r$

Exponential Decay Function

- $r<0$ \& the base $1+r<1$
- Decay factor: $1+r$

Objective: Analyze Exponential Growth and Decay Models

Examples: FINDING GROWTH \& DECAY RATES

Tell whether the function is an exponential growth or decay function \& find the constant percentage rate of growth or decay.

1. $P(t)=3.5 \cdot 1.09^{t}$
2. $f(x)=78,963 \cdot 0.968^{x}$
3. $g(t)=247 \cdot 2^{t}$

Objective: Write Exponential Functions

Examples: FINDING AN EXPONENTIAL FUNCTION

Determine the exponential function that satisfies the given conditions.
4. Initial population $=28,900$, decreasing at a rate of 2.6% per year
5. Initial value $=5$, increasing at a rate of 17% per year
6. Determine a formula for the exponential function whose graph is shown:

Objective: Write Logistic Functions

Examples: FINDING A LOGISTIC FUNCTION

Find the logistic function that satisfies the given conditions.
7. Initial value $=10$, limit to growth $=40$, passing thru $(1,20)$
8. Determine a formula for the logistic function whose graph is shown in the figure.

3.3 LOGARITHMIC FUNCTIONS \& THEIR GRAPHS
 Objective: Convert Equations between Logarithmic Form and Exponential Form, Evaluate Common and Natural Logarithms, and Graph Common and Logarithmic Functions

d Inverses of Exponential Functions
$>$ Logarithmic Function with Base 6
If $f(x)=b^{x}$ with $b>0 \& b \neq 1$, then $f^{-1}(x)=\log _{b} x$.

Objective: Convert Equations between
Logarithmic Form and Exponential Form
> Changing Between Logarithmic \& Exponential Form

- A logarithm is an exponent
- Use the properties of exponents to evaluate logarithms

Basic Properties of Logarithms

- For $0<b \neq 1, x>0$, and any real number y,
- $\log _{b} 1=0$ because $b^{0}=1$
- $\log _{b} b=1$ because $b^{1}=b$
- $\log _{b} b^{y}=y$ because $b^{y}=b^{y}$

- $b^{\log _{b} x}=x$ because $\log _{b} x=\log _{b} x$

Examples: Evaluating LOGARITHMIC \& ExpONENTIAL EXPRESSIONS

Use the "Basic Properties of Logarithms" to evaluate each expression.

1. $\log _{3} 27$
2. $\log _{2} \sqrt{2}$
3. $\log _{4} \frac{1}{16}$
4. $\log _{5} 1$

Objective: Evaluate Common and Natural Logarithms

d common Logarithms - Base 10

- We often drop the subscript of 10 for the base when using common logarithms.
$>$ The common logarithmic function $\log _{10} x=\log x$ is the inverse of the exponential function $f(x)=10^{x}$.
$>$ Basic Properties of Common Logarithms
- Let $x \& y$ be real numbers with $x>0$,
- $\log 1=0$ because $10^{0}=1$
- $\log 10=1$ because $10^{1}=10$
- $\log 10^{y}=y$ because $10^{y}=10^{y}$

$$
\begin{aligned}
& \text { Recall that: } \\
& a^{\frac{m}{n}}=\sqrt[n]{a^{m}} \\
& \frac{1}{a^{n}}=a^{-n}
\end{aligned}
$$

- $10^{\log x}=x$ because $\log x=\log x$

Examples: Evaluating LOgARIThMIC \& Exponential Expressions - Base 10 Evaluate each expression without using a calculator.
5. $\log \sqrt[4]{10}$
6. $10^{\log 7}$
7. $\log 100,000$
8. $\log \frac{1}{10,000}$

〕. Solving simple Logarithmic Equations
$>$ Changing from logarithmic form to exponential form sometimes is enough to solve an equation involving logarithmic functions.

Examples: Solving Simple LOgarithmic Equations

9. $\log x=2$
10. $\log x=-1$

อ Natural Logarithms - Base e

- Logarithms with base e are natural logarithms - "In"

The natural logarithmic function $\log _{e} x=\ln x$ is the inverse of the exponential function $f(x)=e^{x}$.

Basic Properties of Natural Logarithms

- Let $x \& y$ be real numbers with $x>0$,
- $\ln 1=0$ because $e^{0}=1$
- $\ln e=1$ because $e^{1}=e$
- $\ln e^{y}=y$ because $e^{y}=e^{y}$

$$
\begin{aligned}
& \text { Recall that: } \\
& \qquad \begin{aligned}
a^{\frac{m}{n}} & =\sqrt[n]{a^{m}} \\
\frac{1}{a^{n}} & =a^{-n}
\end{aligned}
\end{aligned}
$$

- $e^{\ln x}=x$ because $\ln x=\ln x$

Examples: Evaluating LOGARITHMIC \& ExpONENTIAL EXPRESSION - BASE e

 Evaluate each expression without using a calculator.11. $\ln \sqrt[5]{e}$
12. $\ln e^{11}$
13. $e^{\ln e}$

Objective: Analyze \& Graph Common and Logarithmic Functions

© Graphs of Logarithmic Functions

Basic Function: The Natural Logarithmic Function

$f(x)=\ln x$
Domain: $(0, \infty)$
Range: All reals
Continuous on $(0, \infty)$
Increasing on $(0, \infty)$
No symmetry
Not bounded above or below
No local extrema
No horizontal asymptotes
Vertical asymptote: $x=0$
End behavior: $\lim _{x \rightarrow \infty} \ln x=\infty$

3.4 PROPERTIES OF LOGARITHMIC FUNCTIONS

Objective: Apply the Properties of Logarithms to Evaluate Expressions and Graph Functions
© Properties of Logarithms
$>$ Let b, R \& S be positive real numbers with $b \neq 1, \& c$ is any real number

- Product rule
- Quotient rule
- Power rule

d Expanding or Condensing Logarithms

Why is this necessary?

- When solving equations involving logarithms, it may be necessary to expand (or condense) logarithms.

Objective: Apply the Properties of Logarithms

Examples: EXPANDING LOGARITHMS

Assuming $x \& y$ are positive, use properties of logarithms to write each expression as a sum of logarithms or multiples of logarithms.

1. $\log \left(25 x y^{3}\right)$
2. $\ln \frac{\sqrt{x+1}}{x^{2}}$

Examples: CONDENSING LOGARITHMS

Assuming $x \& y$ are positive, use properties of logarithms to write each expression as a single logarithm.
3. $\ln x^{4}-3 \ln \left(x^{2} y\right)$
4. $3 \ln x^{2}+2 \ln (x y)-\ln \left(x^{3} y\right)$
© Change-of-Base Formula for Logarithms

- For positive real numbers $a, b \& x$ with $a \neq 1 \& b \neq 1$:

Examples: Evaluate by Changing the Base

Use the change-of-base formula \& evaluate each logarithm. Round to four decimal places.
5. $\log _{8} 175$
6. $\log _{0.5} 12$

Objective: Use Properties of Logarithms to Graph Functions

d Graphs of Logarithmic Functions w/Base b

- Any logarithmic function can be rewritten so that it is a constant multiple of the natural logarithmic function $f(x)=\ln x$

$$
g(x)=\log _{b} x=
$$

- If $b>1$, then there's a vertical stretch (or compression)
- If $0<b<1$, then there's a reflection across the x-axis as well

Logarithmic Functions: $f(x)=\log _{b} x$, with $b>1$

$[-1,5]$ by $[-2,2]$

Domain: $(0, \infty)$
Range: All reals
Continuous
Increasing on its domain
No symmetry; neither even nor odd
Not bounded above or below
No local extrema
No horizontal asymptotes
Vertical asymptote: $x=0$
End behavior: $\lim _{x \rightarrow \infty} x=\infty$

Examples: GRAPHING LOGARITHMIC FUNCTIONS

Describe how to transform the graph of $f(x)=\ln x$ into the graph of the given function. Verify by graphing the function w/a grapher.
7. $g(x)=\log _{3} x$
8. $h(x)=\log _{1 / 3} x$

3.5 EQUATION SOLVING

Objective: Apply the Properties of Logarithms to Solve Exponential and Logarithmic Equations Algebraically
d) Solving Exponential Equations
$>$ One-to-One Properties

- For any exponential function: $f(x)=b^{x}$
- For any logarithmic function: $f(x)=\log _{b} x$

Examples: SOLVING AN Exponential Equation Algebraically

Find the exact solution algebraically, and check it via substitution.

1. $81\left(\frac{2}{3}\right)^{x / 4}=16$
2. $2\left(10^{-x / 3}\right)=20$

Solve the equation - for x - algebraically. Calculate a numerical approximation and check it via substitution.
3. $50 e^{0.035 x}=200$
4. $1.06^{x}=4.1$

Solve graphically; round your solution to the nearest thousandth.
5. $\frac{2^{x}-2^{-x}}{3}=4$
© Solving Logarithmic Equations
Methods

- Use the one-to-one property of logarithms
- Change the equation from logarithmic to exponential form
- Use the power rule of logarithms
- Graph each side of the equation separately
- Set the equation equal to 0, graph \& find x-intercept(s)

IMPORTANT!

- Keep track of the domain of each expression in the equation as it is being solved.
- A particular algebraic method may introduce extraneous solutions or worse yet lose some valid solutions.

Examples: SOLVING A LOGARITHMIC EQUATION

Find the exact solution algebraically, and check it via substitution.
6. $\log _{4}(x-5)=-1$
7. $\log x^{2}=8$

Solve the equation algebraically. Obtain a numerical approximation and check it via substitution.
8. $3 \ln (x-3)+4=5$
9. $\ln (x-3)+\ln (x+4)=3 \ln 2$

