\qquad

chap +er 6: transformations of functions \& +heir graphs 6.I - VERTICAL \& HORIZONTAL SHIfTS

OBJECTIVES:

- Identify the effect on the graph of a function replacing $f(x)$ by $f(x)+k$ and $f(x+k)$ for specific values of k (both positive or negative)
- Describe, write a formula, graph and interpret a function that has been shifted vertically and/or horizontally

* EXPLORING TRANSLATIONS - What do you notice? What do you wonder?

Also identify the domain and range of $f(x)$, as well as the domain and range of the transformed graphs.

$$
g(x)=f(x-4)-9
$$

	DOMAIN	RANGE
$f(x)$		
$g(x)$		

	DOMAIN	RANGE
$f(x)$		
$g(x)$		

Translations (shifts)

FUNCTION NOTATION	DESCRIPTION	COORDINATE RULE	DOMAIN OR RANGE CHANGE?
$\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x}-\boldsymbol{h})$			
$\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x}+\boldsymbol{h})$			
$\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})+\boldsymbol{k}$			
$\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{k}$			

Examples:

1. The graph of $y=f(x)$ is shown at right. Write an equation for each related graph showing how the function has been translated.
a.

b.

c.

d.

2. The graph of $g(x)$ contains the point $(-3,0)$. Describe the translation and then write a formula for a translation of g that has a graph containing the point $(5,9)$.
3. Suppose that the x-intercepts of the graph of $y=f(x)$ are $-5 \& 3$. What are the x-intercepts of the graph of $y=f(x+2)$?
4. Suppose that the function $y=f(x)$ is increasing on the interval $(-1,5)$. On what interval is the graph of $y=f(x-2)$ increasing?
5. The domain of a function $h(x)$ is $[0,12]$ and its range is $[-4,2]$. What is the domain and range of $h(x+5)-12$?

6.2 - REFLECTIONS

OBJECTVES:

- Identify the effect on the graph of a function replacing $f(x)$ by $-f(x)$ and $f(-x)$
- Describe, write a formula, graph and interpret a function that has been reflected
* ExPLORING REELECTIONS - What do you notice? What do you wonder?

Also identify the domain and range of $f(x)$, as well as the domain and range of the transformed graphs.

DOMAIN:

Graph $\boldsymbol{y}=-\boldsymbol{f}(\boldsymbol{x})$
REFLECT OVER THE x-AXIS

DOMAIN:

Graph $\boldsymbol{y}=\boldsymbol{f}(-\boldsymbol{x})$
REFLECT OVER THE Y-AXIS

RANGE:

* Reflections Across Axes (flips)

FUNCTION NOTATION	DESCRIPTION	COORDINATE RULE	DOMAIN OR RANGE CHANGE?
$\boldsymbol{y}=-\boldsymbol{f}(\boldsymbol{x})$	Reflect over \boldsymbol{x}-axis		
$\boldsymbol{y}=\boldsymbol{f}(-\boldsymbol{x})$	Reflect over y-axis		

1. The graph of $f(x)$ contains the point $(2,-3)$. What point must lie on the reflected graph if the graph is...
a. reflected about the x-axis?
b. reflected about the y-axis?
2. The graph of $y=f(x)$ is shown at left. Describe the transformation and then write the equation of $k(x)$ in terms of $f(x)$.

If $f(x)=(x+1)^{2}-2$, match the following functions to the graphs.
3. $f(x)$
4. $u(x)=-f(x)$
5. $v(x)=f(-x)$
6. $w(x)=-f(-x)$
(a)

(b)

(c)

(d)

7. The domain of a function $h(x)$ is $[0,12]$ and its range is $[-4,2]$.
a. What is the domain and range of $-h(x-4)$?
b. What is the domain and range of $h(-x)+4$?

6.3 - Vertical Stretches \& Compressions

OBJECTIVES:

- Identify the effect on the graph of a function replacing $f(x)$ by $k f(x)$ for specific values of k
- Describe, write a formula, graph and interpret a function that has been vertically stretched or compressed

* Exploring Vertical Size Changes - What do you notice? What do you wonder?

Also identify the domain and range of $f(x)$, as well as the domain and range of the transformed graphs.

$$
g(x)=\frac{1}{2} f(x)
$$

$$
g(x)=4 f(x)
$$

	DOMAIN	RANGE
$f(x)$		
$g(x)$		

	DOMAIN	RANGE
$f(x)$		
$g(x)$		

* Vertical Stretches \& Compressions

FUNCTION NOTATION	DESCRIPTION	COORDINATE RULE	DOMAIN OR RANGE CHANGE?
$\boldsymbol{y}=\boldsymbol{f} \boldsymbol{f}(\boldsymbol{x}),\|A\|>1$			
$\boldsymbol{y}=\boldsymbol{f} \boldsymbol{f}(\boldsymbol{x}), 0<\|A\|<1$			

Examples:

1. The function $g(x)$ is obtained from $f(x)$ by a single transformation. Use the tables below to find a formula for $g(x)$ in terms of $f(x)$.

x	-4	-2	0	2	4
$f(x)$	12	-4	-2	4	6

x	-4	-2	0	2	4
$g(x)$	36	-12	-6	12	18

2. The graph of $h(x)$ is found by vertically stretching the graph of $f(x)$ by a factor of 7 , reflecting it about the x axis, and then vertically shifting it down 3 units. Find a formula for $h(x)$ in terms of $f(x)$.
3. The graph of $f(x)$ contains the point $(3,-2)$. What corresponding point is on the graph of $g(x)=3 f(x-8)$?

* ORDER IS IMPORTANT!
द \Rightarrow
REFLECTION ABOUT y-AXIS
(2) \Rightarrow
HORIZONTAL TRANSLATION
$3 \Rightarrow$
VERTICAL STRETCH/ compression
§ \Rightarrow
REFLECTION ABOUT X-AXIS
5
VERTICAL TRANSLATIONS

4. Let $y=f(x)$ be the function whose graph is given. Describe the transformations and then sketch the graphs of the transformations.

$$
y=-\frac{1}{2} f(x+2)-3
$$

Transformations:

5. The domain of a function $h(x)$ is $[0,12]$ and its range is $[-4,2]$. What is the domain and range of $-2 h(x+1)-3$?
6. The graph of $g(x)$ is the graph of $f(x)$ after it has been vertically stretched or compressed and then translated. The point $(5,12)$ lies on the graph of $f(x) ;(2,4)$ is the corresponding point on $g(x)$.
a. What is a possible transformation(s) have been performed on $f(x)$?
b. What is a possible formula for $g(x)$ in terms of $f(x)$?

Write an equation for $g(x)$ as a transformation of the function $f(x)$.
7.

8.

Graph the function $f(x)=\sqrt{1-x}+2$. Find the domain and the range of f.
Solution Because horizontal shifts require the form $x-h$, we begin by rewriting $f(x)$ as $f(x)=\sqrt{1-x}+2=\sqrt{-(x-1)}+2$. Now use the following steps:

STEP 1: $y=\sqrt{x}$
STEP 2: $y=\sqrt{-x}$
STEP 3: $y=\sqrt{-(x-1)}=\sqrt{1-x}$
STEP 4: $y=\sqrt{1-x}+2$

Square root function
Replace x by $-x$; reflect about the y-axis.
Replace \times by $x-1$; horizontal shift to the right 1 unit.

See Figure 59.
Figure 59

