6.1 VECTORSTN THE PLANE

Objectives: Apply the arithmetic of vectors; Use vectors to solve real-world problems

〕 Two-Dimension Vectors

$>\mathrm{A}$ \qquad is an ordered pair of real numbers, denoted in \qquad as $\langle a, b\rangle$.

- The numbers a and b are the \qquad of the vector v
- The \qquad of the vector $\langle a, b\rangle$ is the arrow from the origin to the point (a, b)
- The \qquad of v is the length of the vector and the \qquad of v is the direction in which the arrow is pointing

(a)

(b)

FIGURE 6.1 The point represents the ordered pair (a, b). The arrow (directed line segment) represents the vector $\langle a, b\rangle$.
$>$ The vector $0=\langle 0,0\rangle$, called the \qquad , has zero length and no direction
> Any two arrows with the same length and pointing in the same direction represent the same vector

- The arrows $\overrightarrow{R S}$ \& $\overrightarrow{O P}$ both represent the vector $\langle 3,4\rangle$, as would any arrow with the same length pointing in the same direction.
- Such arrows are called \qquad
Head Minus Tail (HMT) Rule

- If an arrow has initial point (x_{1}, y_{1}) and terminal point (x_{2}, y_{2}), it represents the vector \qquad
> Magnitude
- The magnitude of a vector v is also called the \qquad of $\mathrm{v},|\mathrm{v}|$ or $\|\mathrm{v}\|$
- If v is represented by the arrow from $\left(x_{1}, y_{1}\right)$ to $\left(x_{2}, y_{2}\right)$, then
- If $\mathrm{v}=\langle a, b\rangle$, then $|\mathrm{v}|=$ \qquad

Example 1: Showing Arrows are Equivalent

Prove that $\overrightarrow{R S}$ and $\overrightarrow{P Q}$ are equivalent by showing that they represent the same vector: $R=(-4,2), S=(-1,6), P=(2,-1), \& Q=(5,3)$

Example 2: Finding Magnitude of a Vector
Find the magnitude of the vector v represented by $\overrightarrow{P Q}$, where $P=(-3,4) \& Q=$ $(-5,2)$.

〕 Vector Operations

$>$ Vector Addition

- Let $\mathrm{u}=\left\langle u_{1}, u_{2}\right\rangle$ and $\mathrm{v}=\left\langle v_{1}, v_{2}\right\rangle$ be vectors and let k be a real number (scalar). The sum (or resultant) of the vectors u \& v is the vector...
- The product of the scalar k and the vector u is...
> The sum of the vectors $u \& v$ can be represented geometrically by arrows in two ways.

(a)
- Parallelogram representation (b)

(b)

Example 3: Performing Vector Operations

Let $u=\langle 2,-1\rangle, v=\langle 1,3\rangle, \& w=\langle-1,-1\rangle$. Find the component form of the following vectors:
(a) $-u+v$
(b) $u+(-1) w$
(c) $-u+w$
(d) $3 u+2 v$
(e) $-v-2 w$

〕 Unit Vectors
$>A$ vector u with length $|u|=1$ is a unit vector.

- If v is not the zero vector $\langle 0,0\rangle$, then the vector
...is a unit vector in the direction of v.
© Standard Unit Vectors
$>$ Any vector v can be written as an expression in terms of the standard unit vector:
- $\mathrm{v}=\langle a, b\rangle$ is expressed as the \qquad
$a i+b j$ of the vectors
i \& j
- The scalars $a \& b$ are the \qquad and \qquad of the vector v

Example 4: Finding a Unit Vector

Find the unit vector in the direction of the given vector.
(a) $u=\langle 2,-1\rangle$

FIGURE 6.9 The vector \mathbf{v} is equal to $a \mathbf{i}+b \mathbf{j}$.
(b) $v=3 i+2 j$
© Direction Angles
$>$ A simple but precise way to specify the direction of a vector v is to state its direction angle, the angle θ that \qquad
> Resolving the Vector

- If v has direction angle θ, the components of v can be expressed using the formula...

Example 5: Finding the Components of a Vector
Find the components of a given vector.
(a) u with direction angle 105° and magnitude 8
(b) v with direction angle 75° and magnitude 7.5

Example 6: Finding the Direction Angle of a Vector
Find the magnitude and direction of each vector.
(a) $u=\langle 1,4\rangle$
(b) $\mathrm{v}=\langle-5,4\rangle$
(c) $w=\langle 3,-2\rangle$
© Applications of Vectors
$>$ The \qquad of a moving object is a vector because velocity has both magnitude and direction.

- The magnitude of velocity is speed.

A DC-10 jet aircraft is flying on a bearing of 65° at 500 mph . Find the component form of the velocity of the airplane. Recall that the bearing is the angle that the line of travel makes with due north, measured clockwise.

6.2 DOTRRDIUCTOEVECTDRS

Objectives: Calculate the dot product of vectors
อ The Dot Product
$>$ The dot product or inner product of $\mathrm{u}=\left\langle u_{1}, u_{2}\right\rangle \& \mathrm{v}=\left\langle v_{1}, v_{2}\right\rangle$ is...

Examples: Finding Dot Products

Find the dot product of the given vectors.

1. $u=\langle 3,1\rangle \& v=\langle 2,-5\rangle$
2. $u=\langle 5,4\rangle \& v=\langle-4,5\rangle$
3. $u=(-2 i+2 j) \& v=(3 i-5 j)$

Example 4: Using Dot Product to Find Length

Use the dot product to find the length of the vector $u=\langle 4,-3\rangle$
© Angle Between Vectors
$>$ If θ is the angle between the nonzero vectors u \& v, then...
 $\cos \theta=$ \qquad

FIGURE 6.16 The angle θ between nonzero vectors \mathbf{u} and \mathbf{v}.

Examples: Finding the Angle between Vectors
Find the angle between the two given vectors.
5. $u=\langle 4,3\rangle \& v=\langle-3,-1\rangle$
6. $u=\langle 5,3\rangle \& v=\langle-1,-3\rangle$
7. $u=i+\sqrt{2} j \& v=-\sqrt{2} i-4 j$
© Orthogonal Vectors
$>$ The vectors u and v are orthogonal if and only if \qquad

- The terms "perpendicular" and "orthogonal" almost mean the same thing

Example 8: Proving Vectors are Orthogonal
Prove that the vectors $u=\langle 2,3\rangle \& v=\langle-6,4\rangle$ are orthogonal by showing that their dot product is zero.

Example 8: Parallel, Orthogonal or Neither?
Determine whether the vectors $u=\langle 2,-7\rangle \& v=\langle-4,14\rangle$ are parallel, orthogonal, or neither.

6.3 PARAMETRIC EQUATIONS

Objectives: Define parametric equations, eliminate the parameter, and find parametric equations for a line

อ Parametric Equations \& Curves
> The graph of the ordered pairs (x, y) where $x=f(t) \& y=g(t)$ are functions defined on an interval I of t-values is a \qquad . The equations are called \qquad for the curve, the variable t is a \qquad .

〕 Eliminating the Parameter
> When a curve is defined parametrically it is sometimes possible to \qquad
\qquad and obtain a rectangular equation in $x \& y$ that represents the curve.

Examples: Eliminating the Parameter
Eliminate the parameter and identify the graph of the parametric curve - a line, parabola, or a circle.

1. $x=2-t, y=2 t+1$
2. $x=t^{2}, y=2-t$
3. $x=t-2, y=1+2 t^{2}$
4. $x=6 \cos t, y=6 \sin t, 0 \leq t \leq 2 \pi$
© Lines and Line Segments
> We can use vectors to help us find parametric equations for a line.

- Example: Find a parametrization of the line through the points $A(-2,3) \& B(3,6)$
- Let $P(x, y)$ be an arbitrary point on the line through A \& B.

- The vector $\overrightarrow{O P}$ is the tail-to-head vector sum of $\overrightarrow{O A} \& \overrightarrow{A P}$ and $\overrightarrow{A P}$ is a scalar multiple of $\overrightarrow{A B}$.

$$
\begin{aligned}
& \overrightarrow{O P}=\overrightarrow{O A}+\overrightarrow{A P} \\
& \overrightarrow{O P}=\overrightarrow{O A}+t \cdot \overrightarrow{A B} \\
& \langle x, y\rangle=\langle-2,3\rangle+t\langle 3-(-2), 6-3\rangle \\
& \langle x, y\rangle=\langle-2,3\rangle+t\langle 5,3\rangle \\
& \langle x, y\rangle=\langle-2+5 t, 3+3 t\rangle
\end{aligned}
$$

Examples: Finding Parametric Equations for a Line Segment
Find the parametrization of the line segment with endpoints $A \& B$.
5. $A=(1,-1), B=(-2,7)$
6. $A=(12,-2), B=(4,3)$

6.4 POLAR COORDINATES

Objectives: Convert points and equations from polar to rectangular coordinates and vice versa

อ Polar Coordinate System
> A \qquad is a plane with a point O, the
\qquad , and a ray from O to the \qquad
> Each point P in the plane is assigned as \qquad follows:

- r is the \qquad from O to P
- θ is the \qquad whose initial side is on the polar axis and whose terminal side is on the line $O P$

- As in trigonometry, we measure θ as positive when moving counterclockwise; negative when moving clockwise
- If $r>0$, then P is on the terminal side of θ
- If $r<0$, then P is on the terminal side of $\theta+\pi$

Examples: Plotting Points in the Polar Coordinate System
Plot the points with the given polar coordinates.

1. $P\left(2, \frac{\pi}{3}\right)$
2. $Q\left(-1, \frac{3 \pi}{4}\right)$
3. $R\left(3,-45^{\circ}\right)$

© Finding all Polar Coordinates of a Point
> Let P have polar coordinates (r, θ). Any other polar coordinate of P must be of the form...
...where n is any integer.

- In particular, the pole has polar coordinates $(0, \theta)$, where θ is any angle.

Example 4: Finding all Polar Coordinates for a Point
If point P has polar coordinates $(3, \pi / 3)$, find all polar coordinates for P.

〕 Coordinate Conversion
$>$ Let the point P have polar coordinates (r, θ) and rectangular coordinates

Examples: Converting from Polar to Rectangular Coordinates
Find the rectangular coordinates of a point with the given polar coordinates.
5. $P\left(3, \frac{3 \pi}{4}\right)$
6. $R\left(3,-\frac{5 \pi}{6}\right)$
7. $T\left(2,-215^{\circ}\right)$
8. $V\left(6,80^{\circ}\right)$

When converting rectangular coordinates to polar coordinates, we must remember there are infinitely many possible polar coordinate pairs.

Examples: Converting from Rectangular to Polar Coordinates

For the point with the given rectangular coordinates, find all polar coordinates that satisfy $-\pi \leq \theta \leq \pi$.
9. $P(-3,3)$
10. $R(3,-5)$
11. $T(-2,-2)$
12. $Q(2,5)$

Examples: Converting from Polar Form to Rectangular Form

 Convert the polar equation to rectangular form.13. $r=2 \cos \theta+\sin \theta$
14. $r=-6 \sin \theta$
15. $r \sec \theta=-12$
16. $r=4 \csc \theta$

Examples: Converting from Rectangular Form to Polar Form

 Convert the rectangular equation to polar form.17. $x^{2}+(y-4)^{2}=16$
18. $(x-3)^{2}+(y-4)^{2}=25$
19. $y=3$
20. $3 y-2 x=3$
