

Refer to my website for additional resources. www.schultzjen.weebly.com

	esson 6.4.D1 – Big Ideas Converting between logarithmic & exponential form Solving exponential equations Product rule Quotient rule Power rule Solving logarithmic equations Using natural logarithms to solve exponential equations	<u>Your Notes</u>		Product rule: Quotient rule: Power rule: 1	$\log_{b} R + \log_{b} S = \log_{b} (RS)$ $\log_{b} R - \log_{b} S = \log_{b} \left(\frac{R}{S}\right)$ $\log_{b} (R^{c}) = \operatorname{clog}_{b} R$	
SOLVING EXPONENTIAL & LOGARITHMIC FOUNTIONS						
	EXPONENTIAL		LOGARITHMIC			
	CAN THE DASES DE VIR THE SAME? NO FEE NO FEE NO FEE Use natural logarithms to solve. I Isolate the exponential expression. 2. Take the natural log of both sides. 3. Simplify using: $\ln b^x = x \ln b$ 4. Solve for the variable. I IN VIENTIAL Use THE SAME? I Isolate the exponential expression. M = I Solve for the variable.	OUTSIDE TH $\log_b c$ = $b^M = b^N$ are equal:Nte variable. $0 000 B M$ 1. Get the 12. Use defi3. Solve for4. Check.	LOGARITHMICWHERE BS FILE WURKOUTSIDE THE LOG? $\log_b c = M$ log _b c = Mlog _b c = MUse the definition of logs to convert. Then solve using the One-to-One Property of Exponents.NOWat does there more the the Use the product condenseWhat does the equation log _b $M = c$ log _b $M = c$ lowhere M contains the variablewhereUse the definition of logarithm:Use the log alone.1. Get the log alone.1. M =2. Use definition to convert.2. Solve 3. Solve for the variable.1. M =2. Solve 3. Solve for the variable.1. M =2. Solve 3. Solve for the variable.1. M =2. Solve 3. Solve for the variable.3. Check		$OVER M = \log_b N$ THE LOG? $\log_b M = \log_b N$ the one log on one side of equation? VES The log on one side of equation? VES The log on one side of a constant rule to the logarithm cock like? $M = \log_b N$ We contain the variable One-to-One Property of Logarithms Q for the variable.	
	Lesson 6.5 – Big Ideas	Your Notes				
•	Doubling time		Non-Continuous		Continuous	
•	Converting between $0 = a(b)^t$	Function Formula	$Q = a(b)^t$		$Q = ae^{kt}$	
-	$\& Q = ae^{kt}$	Convert	$b = e^{\kappa}$		$k = \ln b$	
•	Annual growth rates vs.	Rate Rule	(<i>b</i> – 1)	× 100%	<i>k</i> × 100%	
	continuous growth rates	Doubling Time	$2 = b^t$	$2 = (1+r)^t$	$2 = e^{kt}$	
		Half-Life	$\frac{1}{2} = b^t$	$\frac{1}{2} = (1-r)^t$	$\frac{1}{2} = e^{-kt}$	

Refer to my website for additional resources. <u>www.schultzjen.weebly.com</u>