CHAPTERS 7 & 8 PROOFS – COMMONLY USED REASONS

METHODS OF PROVING TRIANGLES CONGRUENT					
SSS	SAS	AS	5A	AAS	HL
Assumed from diagram. Linear Pairs			Linear Pair Postulate If two angles form a linear pair, then they are supplementary.		
Vertical angles are congruent. Hint: Look for a "bow tie."			Right angles are congruent.		
Definition of bisects (or trisects) If a ray bisects an angle, then it divides the angle into two congruent angles.			Definition of perpendicular (\perp) If two lines are perpendicular, then they intersect and form right angles.		
Definition of midpoint If a point is a midpoint of a segment, then it divides the segment into two congruent segments.			Definition of ⊥ bisector (If you're given this, then you're technically given perpendicular & bisects.)		
Reflexive Use with common/shared sides and common/shared angles.			TRANSITIVE PROPERTY If angles (or segments) are congruent to the same (or congruent) angle (or segment), then they are congruent to each other.		
Two points determine a line Use when drawing in an auxiliary line.			SUBSTITUTION (Do not use when proving congruence.)		
Congruent Supplements Theorem			Congruent Complements Theorem		
If angles are supplementary to the same angle (or congruent angles), then they are congruent.			If angles are complementary to the same angle (or congruent angles), then they are congruent.		
Segment Addition Property If a segment (or congruent segments) is added to two congruent segments, the sums are congruent.		Angle Addition Property If an angle (or congruent angles) is added to two congruent angles, the sums are congruent.			
Segment Subtraction Property If a segment (or congruent segments) is subtracted from two congruent segments, the differences are congruent.		Angle Subtraction Property If an angle (or congruent angles) is subtracted from two congruent angles, the differences are congruent.			

CHAPTERS 7 & 8 PROOFS – COMMONLY USED REASONS

ALTERNATE INTERIOR ANGLES THEOREM	SAME-SIDE INTERIOR ANGLES THEOREM <i>If two parallel lines are cut by a transversal, each</i>		
<i>If two parallel lines are cut by a transversal, each pair of alternate interior angles are congruent.</i>	pair of same-side interior angles are supplementary.		
Corresponding Angles Postulate	Alternate Exterior Angles Theorem		
<i>If two parallel lines are cut by a transversal, each pair of corresponding angles are congruent.</i>	If two parallel lines are cut by a transversal, each pair of alternate exterior angles are congruent.		
CPCTC Must prove triangles to be conservent PEEOPE	All radii are congruent.		
Must prove triangles to be congruent BEFORE using CPCTC.	Use when you're given a circle.		
Definition of median	Definition of altitude		
If a segment is a median of a triangle, then it divides the opposite side into two congruent segments.	If a segment is an altitude of a triangle, then it forms right angles with the side to which it is drawn.		
Definition of isosceles triangle	Definition of right triangle		
If at least two sides of a triangle are congruent, then the triangle is an isosceles triangle.	If a triangle has a right angle, then it is a right triangle.		
Isosceles Triangle Base Angle Theorem	Definition of equilateral triangle		
If two sides of a triangle are congruent, then the angles opposite these sides are congruent.	If all three sides of a triangle are congruent, then the triangle is an equilateral triangle.		
Isosceles Triangle Base Angle Converse Theorem	Isosceles Triangle Altitude to Congruent Sides Theorem		
If two angles of a triangle are congruent, then the sides opposite these angles are congruent.	In an isosceles triangle, the altitudes to the congruen sides are congruent.		
Isosceles Triangle Perpendicular	Isosceles Triangle Base Theorem		
Bisector Theorem The altitude from the vertex angle of an isosceles triangle is the perpendicular bisector of the base.	<i>The altitude to the base of an isosceles triangle bisect the base.</i>		
Isosceles Triangle Bisector to Congruent Sides Theorem	Isosceles Triangle Vertex Angle Theorem		
In an isosceles triangle, the angle bisectors to the	<i>The altitude to the base of an isosceles triangle bisects the vertex angle.</i>		