Methoids df Proving Triangles Congruent				
SSS	SAS	ASA	AAS	HL
Assumed from diagram. Linear Pairs			Linear Dair Dostulate If two angles form a linear pair, then they are supplementary.	
Vertical angles are congruent. Hint: Look for a "bow tie."			Right angles are congruent.	
Definition of bisects (or trisects) If a ray bisects an angle, then it divides the angle into two congruent angles.			Definition of perpendicular (\perp) If two lines are perpendicular, then they intersect and form right angles.	
Definition of midpoint If a point is a midpoint of a segment, then it divides the segment into two congruent segments.			Definition of \perp bisector (If you're given this, then you're technically given perpendicular \& bisects.)	
Reflexive Use with common/shared sides and common/shared angles.			TRANSITIVE PROPERTY If angles (or segments) are congruent to the same (or congruent) angle (or segment), then they are congruent to each other.	
Two points determine a line Use when drawing in an auxiliary line.			SUBSTITETTION (Do not use when proving congruence.)	
Congruent Supplements Theorem If angles are supplementary to the same angle (or congruent angles), then they are congruent.			Congruent Complements Theorem If angles are complementary to the same angle (or congruent angles), then they are congruent.	
Segment $\mathcal{A} d$ dition Property If a segment (or congruent segments) is added to two congruent segments, the sums are congruent.			Angle Addition Property If an angle (or congruent angles) is added to two congruent angles, the sums are congruent.	
Segment Subtraction Property If a segment (or congruent segments) is subtracted from two congruent segments, the differences are congruent.			Angle Subbtraction Property If an angle (or congruent angles) is subtracted from two congruent angles, the differences are congruent.	

ALTERRNATE INTERIOR ANGLLS THEOREM If two parallel lines are cut by a transversal, each pair of alternate interior angles are congruent.	Same-Side Interior Angles Theorem If two parallel lines are cut by a transversal, each pair of same-side interior angles are supplementary.
Corresponding Angles Postulate If two parallel lines are cut by a transversal, each pair of corresponding angles are congruent.	Alternate Exterior Angles Theorem If two parallel lines are cut by a transversal, each pair of alternate exterior angles are congruent.
CPCTC Must prove triangles to be congruent BEFORE using CPCTC.	All radii are congruent. Use when you're given a circle.
Definition of median If a segment is a median of a triangle, then it divides the opposite side into two congruent segments.	Definition of altitude If a segment is an altitude of a triangle, then it forms right angles with the side to which it is drawn.
Definition of isosceles triangle If at least two sides of a triangle are congruent, then the triangle is an isosceles triangle.	Definition of right triangle If a triangle has a right angle, then it is a right triangle.
Isosceles Triangle Base Angle Theorem If two sides of a triangle are congruent, then the angles opposite these sides are congruent.	Definition of equilateral trinngle If all three sides of a triangle are congruent, then the triangle is an equilateral triangle.
Isosceles Triangle Base Angle Converse Theorem If two angles of a triangle are congruent, then the sides opposite these angles are congruent.	Isosceles Triangle Alititude to Congruent Sides Theorem In an isosceles triangle, the altitudes to the congruent sides are congruent.
Isosceles Triangle Perpendicular Bisector Theorem The altitude from the vertex angle of an isosceles triangle is the perpendicular bisector of the base.	Isosceles Triangle Base Theorem The altitude to the base of an isosceles triangle bisects the base.
Isosceles Triangle Bisector to Congruent Sides Theorem In an isosceles triangle, the angle bisectors to the congruent sides are congruent.	Isosceles Triangle Vertex Angle Theorem The altitude to the base of an isosceles triangle bisects the vertex angle.

