7.7.D2 ~ USAMT COMGROEMT TRBANTGLES

ACCESS:NG PRiOR KNOWLEDGE

a. If C is the midpoint of $\overline{B E}$, then what two segments are congruent?
b. If $\overline{B E} \& \overline{A D}$ intersect at C, what two angles must be congruent and why?
c. Name two other congruent angles and explain why they are congruent.

d. If $\overrightarrow{B D}$ bisects $\angle A B C$, then what two angles are congruent
e. Why is $\overline{B D} \cong \overline{B D}$?

PROVING TRIANGLES CONGRUENT COULD BE A VERY TEDIOUS TASK IF WE HAD TO VERIFY THE CONGRUENCE OF EVERY ONE OF THE SIX PAIRS OF CORRESPONDING PARTS.

TRIANGLES HAVE SOME SPECIAL PROPERTIES THAT WILL ENABLE US TO PROVE TWO TRIANGLES ARE CONGRUENT BY COMPARING ONLY THREE SPECIALLY CHOSEN PAIRS OF CORRESPONDING PARTS.

Side-Side-Side Congruence Postulate (SSS)

Words If three sides of one triangle are congruent to three sides of a second triangle, then the two triangles are congruent.

Symbols If Side $\overline{M N} \cong \overline{Q R}$, and
Side $\overline{N P} \cong \overline{R S}$, and
Side $\overline{P M} \cong \overline{S Q}$, then $\triangle M N P \cong \triangle Q R S$.

Examples: Using the SSS Congruence Postulate

Does the diagram give enough information to use the SSS Congruence Postulate? Explain your reasoning.

List those angles \&/or sides you know to be congruent:

List those angles \&/or sides you know to be congruent:

Side-Angle-Side Congruence Postulate (SAS)

Words If two sides and the included angle of one triangle are congruent to two sides and the included angle of a second triangle, then the two triangles are congruent.

Symbols If Side $\overline{P Q} \cong \overline{W X}$, and
Angle $\angle Q \cong \angle X$, and
Side $\overline{Q R} \cong \overline{X Y}$,

then $\triangle P Q R \cong \triangle W X Y$.

Examples: Using the SAS Congruence Postulate
Does the diagram give enough information to use the SAS Congruence Postulate? Explain your reasoning.
3.

List those angles \&/or sides you know to be congruent:
4.

List those angles \&/or sides you know to be congruent:

Angle-Side-Angle Congruence Postulate (ASA)

Words If two angles and the included side of one triangle are congruent to two angles and the included side of a second triangle, then the two triangles are congruent.

Symbols If Angle $\angle A \cong \angle D$, and
Side $\overline{A C} \cong \overline{D F}$, and
Angle $\angle C \cong \angle F$, then $\triangle A B C \cong \triangle D E F$.

Examples: Using the ASA Congruence Postulate
Does the diagram give enough information to use the ASA Congruence Postulate? Explain your reasoning.
5.

List those angles \&/or sides you know to be congruent:
6.

List those angles \&/or sides you know to be congruent:

Angle-Angle-Side Congruence Theorem (AAS)

Words If two angles and a non-included side of one triangle are congruent to two angles and the corresponding non-included side of a second triangle, then the two triangles are congruent.
Symbols If Angle $\angle A \cong \angle D$, and
Angle $\angle C \cong \angle F$, and
Side $\overline{B C} \cong \overline{E F}$, then $\triangle A B C \cong \triangle D E F$.

Examples: Using the AAS Congruence Theorem

Based on the diagram, can you use the AAS Congruence Theorem to show that the triangles are congruent? If not, what additional congruence is needed?

List those angles \&/or sides you know to be congruent:
8.

List those angles \&/or sides you know to be congruent:

Examples: Deciding Whether Triangles are Congruent

Does the diagram given enough information to show that the triangles are congruent? If so, state the method - SSS, SAS, ASA or AAS - you would use.

Diagram	Congruences	Method
9.		
10.		
II. :-		

7.8 ~ SOMGBUBMT TBANMGLZ PROOßS

อ Methods of Proving Triangles Congruent
$>$ The Side-Side-Side Congruence Theorem

- If three sides of one triangle are congruent to the corresponding sides of another triangle, then the triangles are congruent. (SSS)

$$
\overline{G H} \cong
$$

$$
\ldots \overline{L J}
$$

$$
\overline{H I} \cong
$$

\qquad

$>$ The Side-Angle-Side Congruence Theorem

- If two sides and the included angle of one triangle are congruent to the corresponding two sides and the included angle of a second triangle, then the triangles are congruent. (SAS)

Side
Angle Side
$\overline{R P} \cong$ \qquad $\angle Q R P \cong$ \qquad

$$
\ldots \overline{D C}
$$

The Angle-Side-Angle Congruence Theorem

- If two angles and the included side of one triangle are congruent to the corresponding two angles and included side of another triangle, then the triangles are congruent. (ASA)

> The Angle-Angle-Side Congruence Theorem

- If two angles and a non-included side of one triangle are congruent to the corresponding two angles and the corresponding non-included side of a second triangle, then the triangles are congruent. (AAS)

Angle
$\angle C A B \cong$ \qquad
Angle
$\ldots _\angle X Z Y$

BE ON THE LOOKOUT FOR: (1) VERTICAL ANGLES \& (2) SHARED SIDES - REFLEXIVE PROPERTY

Examples: Congruent? SSS, SAS, ASA or AAS?

Determine whether you could prove that the triangles are congruent. If so, write a congruence statement \& identify the postulate you could use.
I.

2.

3.

Examples:

In 4-7, you are given the congruent angles and sides shown by the tick marks. Name the additional congruent sides or angles needed to prove that the triangles are congruent by each specified method.
4.
a. SSS
b. SAS

5. a. ASA
b. AAS

6. Prove: $\triangle P W T \cong \triangle S V R$
a. SAS
b. ASA

c. AAS
7. Prove: $\triangle A E C \cong \triangle D E B$
a. SSS
b. SAS

PROOFS:
8. Given: $\overline{M N} \cong \overline{P O}$

$$
\overline{M O} \cong \overline{P N}
$$

Prove: $\quad \triangle M N O \cong \triangle P O N$

Statements
9. Given:
$\overline{B C} \cong \overline{D C}$
$\cong \overline{C E}$

Prove: $\triangle A B C \cong \triangle D E C$

10. Given: $\overline{A B} \cong \overline{C D}$

$$
\overline{A F} \cong \overline{D E}
$$

$$
\angle A \cong \angle D
$$

Prove: $\triangle F A C \cong \triangle E D B$

Proofs 11 \& 12: Sque for 7.8.D3
II. Overlapping Triangles

Given: $\quad \angle J A B \cong \angle K B A$
$\angle 1 \cong \angle 2$
Prove: $\triangle J A B \cong \triangle K B A$

Statements	Reasons

Helpful Hints w/Overlapping Triangles

- Draw the triangles separately.
- Outline the two triangles in different colors.
- ALSO...there will be a reflexive step-that shared side or angle.

12. Given: $\overline{Y W}$ bisects $\overline{A X}$
$\angle A \cong \angle X$
$\angle 5 \cong \angle 6$
Prove: $\quad \triangle A W Y \cong \triangle X W Z$

Statements	Reasons

d The Hypotenuse-Leg Congruence Theorem
$>$ If the hypotenuse and leg of one right triangle are congruent to the hypotenuse and leg of another right triangle, then the triangles are congruent. (HL)

Given: $\angle C$ and $\angle F$ are right angles

$$
\overline{A C} \cong \overline{D F}
$$

$$
\overline{A B} \cong \overline{D E}
$$

Examples: What additional information would you need to prove the triangles congruent by the HL Congruence Theorem?

1. $\triangle S T R \cong \triangle P Q N$

2. $\triangle A B C \cong \triangle D C B$

d Altitudes of Triangles
$>$ If a segment is an altitude of a triangle, then it forms right angles with the side to which it is drawn.

- Every triangle has three altitudes.
- An altitude of a triangle forms right angles with one of the sides.
- Identify the altitude shown \& the right angles formed in the following diagrams:

$\triangle T R S$ ~ altitude: \qquad
right angle(s): _____

$\triangle A B D$ ~ altitude: \qquad
right angle(s): \qquad

$\triangle K L M$ ~ altitude: \qquad
right angle(s): \qquad

PROOFS:
3. Given: $\overline{W J} \cong \overline{K X}$
$\angle J W X$ is a right angle $\angle X K J$ is a right angle

Prove: $\quad \triangle W J X \cong \triangle K J X$

Statements	Reasons

4. Given: $\overline{G H} \cong \overline{G K}$
$\overline{G J}$ is an altitude
Prove: $\triangle G H J \cong \triangle G K J$

Statements	Reasons

8.2 ~ SPCTS 8 SORCBES

If two triangles are congruent, then each part of one triangle is congruent to the corresponding part of the other triangle. "Corresponding parts of congruent triangles are congruent," is abbreviated as CPCTC, is often used as reasons in proofs. CPCTC states that corresponding angles or sides in two congruent triangles are congruent. This reason can only be used after you have proven that the triangles are congruent.

A PROOF:

I. Given: $\overline{C W} \& \overline{S D}$ bisect each other

Prove: $\quad \overline{C S} \cong \overline{W D}$

อ Circles

- A circle is named by its center; this circle is called circle P (or $\odot P$)

Radii

- Points A, B, and C lie on circle $P(\odot P)$
- $\overline{P A}$ is called a radius
- $\overline{P A}, \overline{P B}, \& \overline{P C}$ are called radii

- Theorem: All radii of a circle are congruent.

A PROOF:
2. Given: $\odot \bigcirc$

Prove: $\overline{X W} \cong \overline{Z Y}$
Statements

Reasons

〕 Auxiliary Lines
$>$ Need there to be line connecting two points? No problem!

- Auxiliary lines connect two points already in the diagram.

Whenever we use an auxiliary line in a proof, we must be able to show that such a line can be drawn \& then justify it with the following postulate:

Two points determine a line.

Statements	Reasons
Draw $\overline{A L}$	
	Two points determine a line.

A PROOF:

3. Given: $\bigodot \bigcirc$

$$
\overline{G J} \cong \overline{H J}
$$

Prove: $\quad \angle G \cong \angle H$

Statements	Reasons

8.3 ~ TRBANTKLES RM PROOFS

อ Medians of Triangles
$>$ If a segment is a median of a triangle, then it divides the opposite side into two congruent segments.

A PROOF:

I. Given: $\overline{A B} \cong \overline{C B}$
$\overline{B D}$ is a median of $\triangle A B C$
Prove: $\triangle A B D \cong \triangle C B D$

อ Triangles in Proofs
$>$ Isosceles Triangles

- If at least two sides of a triangle are congruent, then the triangle is an isosceles triangle.

Equilateral Triangles

- If all sides of a triangle are congruent, then the triangle is an equilateral triangle.

Right Triangles

- If a triangle has a right angle, then it is a right triangle.

厄 Isosceles Triangle Theorems
$>$ Isosceles Triangle Base Angle Theorem

- If two sides of a triangle are congruent, then the angles opposite these sides are congruent.
$>$ Isosceles Triangle Base Angle Converse Theorem
- If two angles of a triangle are congruent, then the sides opposite these angles are congruent.
PROOFS:

2. Given: $\quad \begin{array}{ll}\overline{Q M} \cong \overline{Q P} \\ & \overline{M N} \cong \overline{P O}\end{array}$

Prove: $\quad \angle Q N P \cong \angle Q O M$
Statements

Reasons

3. Given: $\overline{T A}$ is a median of $\triangle R I T$ $\triangle R I T$ is isosceles with base $\overline{R I}$
Prove: $\triangle T R A \cong \triangle T I A$

Statements	Reasons

ᄅ More Isosceles Triangle Theorems
$>$ Isosceles Triangle Base Theorem

- The altitude to the base of an isosceles triangle bisects the base.
$>$ Isosceles Triangle Vertex Angle Theorem
- The altitude to the base of an isosceles triangle bisects the vertex angle.
$>$ Isosceles Triangle Perpendicular Bisector Theorem
- The altitude from the vertex of an isosceles triangle is the perpendicular bisector of the base.
$>$ Isosceles Triangle Altitude to Congruent Sides Theorem
- In an isosceles triangle, the altitudes to the congruent sides are congruent.
$>$ Isosceles Triangle Bisector to Congruent Sides Theorem
- In an isosceles triangle, the angle bisectors to the congruent sides are congruent.

