	CHAPTER 7: CONGRUENGE THROUGH IRANSFORMAIIONS Cornell Notes/Summary Sheet	Name: \qquad Period: \qquad Turn this in on the day of the test. This is an assignment grade.
	DISTANCE FORMULA: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$	
Lesson 7.1 - Big Ideas - What is a rigid motion? - Coordinate rules regarding translations, rotations, and reflections Look at examples on pages $589-591$.	Your Notes ORIGINAL TRANSLATIONS RIGHT ROTATIONS (COUNTERCLOCKWISE) REFLECTIONS	$\text { OINT: }(x, y)$ LEFT UP DOWN $\underline{180^{\circ}} \quad \underline{270^{\circ}}$
Lesson 7.2 - Big Ideas - What does it mean when we say two triangles are congruent? - What are the properties of congruent triangles?	Your Notes	
Lesson 7.3 - Big Ideas - Side-Side-Side (SSS) Congruence Theorem Look at an example - on the coordinate plane - on page 592.	Your Notes	

Lesson 7.4 - Big Ideas

- Side-Angle-Side (SAS) Congruence Theorem
- The included angle

Look at an example - on the coordinate plane - on page 593.

Lesson 7.5 - Big Ideas

- Angle-Side-Angle (ASA) Congruence Theorem
- The included side

Look at an example - on the coordinate plane - on page 594.

Lesson 7.6 - Big Ideas

- Angle-Angle-Side (AAS) Congruence Theorem
- The non-included side

Look at an example - on the coordinate plane - on page 595.

Lesson 7.7 - Big Ideas

- Does the given information result in triangle congruency?
- What additional infomration is needed to prove specified triangles congruent?
- What congruence theorem proves triangle congruency?

Lesson 7.8 - Hints

Congruent Triangle Proofs

- Look for key words and symbols in the given information.
- Address "givens" one at a time.
- Ask yourself, "What can I conclude from this?"
- If it's a congruence, mark your diagram.
- REFER TO YOUR "COMMONLY USED REASONS" CARD!!! Don't guess.
- Look at the diagram: is there any information that you can get from it? (i.e. linear pairs, vertical angles...)
- Angles are numbered for a reason.
- Make a notation, next to the step number, where you say a pair of sides, or angles, are congruent.
- Be aware of triangles that share sides (or angles), there will be a reflexive step.

