\qquad

8.2 - MATEXX OPERATIONS

OBJECTIVES:

- Find the sum, difference, and product of two matrices
- Find the product of a scalar and a matrix
* Matrix Addition \& Matrix Subtraction
$>$ We add (or subtract) two matrices of the same dimension by adding (or subtracting) their corresponding entries.
$>$ Let $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ be matrices of order $m \times n$.
- The sum $A+B$ is the $m \times n$ matrix $A+B=\left[a_{i j}+b_{i j}\right]$
- The difference $A-B$ is the $m \times n$ matrix $A-B=\left[a_{i j}-b_{i j}\right]$

* Scalar Multiplication

- Scalar means constant or number.
$>$ We multiply each entry by the scalar.
$>$ The product of the real number k and the $m \times n$ matrix $A=\left[a_{i j}\right]$ is the $m \times n$ matrix $k A=\left[k a_{i j}\right]$

FKANTMRLES8

Find the sum, difference, and or product of the matrices.
1.
$\left[\begin{array}{cc}6 & -4 \\ 1 & 5 \\ -5 & 2\end{array}\right]+\left[\begin{array}{cc}3 & -1 \\ -6 & 2 \\ 2 & 3\end{array}\right]$
2.

$$
-2\left[\begin{array}{cc}
0 & -1 \\
4 & -2 \\
-6 & 6
\end{array}\right]
$$

3. $-5\left(\left[\begin{array}{cc}2 & -4 \\ -3 & -2\end{array}\right]-\left[\begin{array}{cc}-4 & -1 \\ -5 & 3\end{array}\right]\right)$
4. $5\left[\begin{array}{cc}-3 & -2 \\ -6 & 0\end{array}\right]-\left[\begin{array}{cc}-3 & -6 \\ 1 & 0\end{array}\right]$

* Equal Matrices

$>$ Equal matrices have the same dimensions and equal corresponding elements.

- You can use the definition of equal matrices to find unknown values in matrix elements.

ENORMPLS8

5. Find the value of each variable: $\left[\begin{array}{cc}2 & 4 \\ 8 & 4.5\end{array}\right]=\left[\begin{array}{cc}4 x-6 & 5-10 t \\ 4 x & 15 t+1.5 x\end{array}\right]$

* Matrix Multiplication
$>$ Caution!
- Matrix multiplication can be performed only if the number of columns of the first matrix is equal to the number of rows of the second matrix.

- Matrix multiplication is not commutative!
- That is, $A B \neq B A$.

FKANHPRES8

Determine whether the product exists.

$$
F=\left[\begin{array}{ll}
2 & 3 \\
6 & 9
\end{array}\right]
$$

$$
G=\left[\begin{array}{ccc}
-3 & 6 & 2 \\
2 & -4 & 1
\end{array}\right]
$$

$$
H=\left[\begin{array}{c}
-5 \\
6
\end{array}\right]
$$

$$
J=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]
$$

6. $F G$
7. $G F$
8. $F H$
9. $H G$
10. $H J$

* Matrix Multiplication
$>$ An $m \times n$ matrix A and an $n \times p$ matrix B can be multiplied together to form a new $m \times p$ matrix, C. The value of the entry in the i th row and j th column of C is the product of the i th row of A and the j th column of B.
> Observe:

$$
\left[\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right] \cdot\left[\begin{array}{ll}
x_{1} & y_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ll}
y_{1} x_{1}+b_{1} x_{2} & a_{1} y_{1}+b_{1} y_{2} \\
y_{2} x_{1}+b_{2} x_{2} & a_{2} y_{1}+b_{2} y_{2}
\end{array}\right]
$$

FKANTPLES8

Find the product of the matrices, if possible.
11. $\left[\begin{array}{lll}-3 & -6 & -1\end{array}\right] \cdot\left[\begin{array}{cc}-4 & -4 \\ -3 & -6 \\ -4 & 6\end{array}\right]$
12. $\left[\begin{array}{cc}3 & 2 \\ -1 & 3\end{array}\right] \cdot\left[\begin{array}{ccc}4 & 4 & 3 \\ 6 & 6 & -3\end{array}\right]$

8.3.DI - DETERMMNANTS \& CRAMER'S RULE

OBJECTIVES:

- Find the value of the determinant of a matrix
- Use Cramer's Rule so solve systems of equations
* Determinant of a 2×2 Matrix
$>\operatorname{If} A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then $\operatorname{det}(A)=\left|\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ c & \mathrm{~d}\end{array}\right|=\mathrm{ad}-\mathrm{cb}$

FKANTPLK®8

Find the value of each determinant.

1. $\left|\begin{array}{cc}24 & 6 \\ -13 & -4\end{array}\right|$
2. $\left|\begin{array}{cc}-6 & 7 \\ -9 & 10\end{array}\right|$

* Cramer's Rule

$>$ Determinants can be used to solve a system of linear equations.
$>$ The solution to the system $\left\{\begin{array}{l}a x+b y=c \\ d x+e y=f\end{array}\right.$ is (x, y) where $x=\frac{D x}{D} \& y=\frac{D y}{D} . D$ is the coefficient matrix: $D=\left|\begin{array}{ll}a & b \\ d & e\end{array}\right|, D x=\left|\begin{array}{ll}c & b \\ f & e\end{array}\right|, \& D y=\left|\begin{array}{ll}a & c \\ d & f\end{array}\right|$

FNANHPRES\&

Solve each system of equations by using Cramer's Rule.
3. $\left\{\begin{array}{l}5 x+4 y=-1 \\ 2 x-y=10\end{array}\right.$
$D=$
$D x=$
$D y=$
4. $\left\{\begin{array}{l}3 x+2 y=5 \\ 5 x-6 y=11\end{array} \quad D=\right.$
$D x=$
$D y=$
5. $\left\{\begin{array}{l}4 x+7 y=22 \\ 8 x-2 y=-5\end{array} \quad D=\right.$
$D x=$
$D y=$

8.3.D2 - DEETRMMNANTS \& CRAMER'S RULE

OBJECTIVES:

- Find the value of the determinant of a matrix
- Use Cramer's Rule so solve systems of equations
* Determinant of a 3×3 Matrix - Expansion by Minors

$$
\begin{aligned}
& \left|\begin{array}{ccc}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=\underset{\uparrow}{a_{1}}\left|\begin{array}{ll}
b_{2} & c_{2} \\
b_{3} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{ll}
b_{1} & c_{1} \\
b_{3} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{ll}
b_{1} & c_{1} \\
b_{2} & c_{2}
\end{array}\right| \\
& \begin{array}{c}
\text { Each } a \text { on the right comes } \\
\text { from the first column. }
\end{array}
\end{aligned}
$$

$>$ The numerical factors $-a_{1}, a_{2} \& a_{3}-$ are elements from the first column of the third-order determinant.

- A minus sign precedes the second term: a_{2}
$>$ The minor - the second-order determinant - is obtained by crossing out the row and the column containing the numerical factor.

FNOANPLEs
Find the value of the determinant.

1. $\left|\begin{array}{ccc}2 & 1 & 7 \\ -5 & 6 & 0 \\ -4 & 3 & 1\end{array}\right|$

* Cramer's Rule
$>$ Determinants can be used to solve a system of equations in three variables.

If

$$
\left\{\begin{array}{l}
a_{1} x+b_{1} y+c_{1} z=d_{1} \\
a_{2} x+b_{2} y+c_{2} z=d_{2} \\
a_{3} x+b_{3} y+c_{3} z=d_{3}
\end{array}\right.
$$

$$
D=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|
$$

These are the coefficient of the variables.

$$
D_{y}=\left|\begin{array}{lll}
a_{1} & d_{1} & c_{1} \\
a_{2} & d_{2} & c_{2} \\
a_{3} & d_{3} & c_{3}
\end{array}\right|
$$

Replace y-coefficients in D with the constants on the right of the three equations.

Then

$$
\begin{gathered}
x=\frac{D_{x}}{D}, y=\frac{D_{y}}{D}, \& z=\frac{D_{z}}{D} \\
D_{x}=\left|\begin{array}{lll}
d_{1} & b_{1} & c_{1} \\
d_{2} & b_{2} & c_{2} \\
d_{3} & b_{3} & c_{3}
\end{array}\right|
\end{gathered}
$$

Replace x-coefficients in D with the constants on the right of the three equations.

$$
D_{z}=\left|\begin{array}{lll}
a_{1} & b_{1} & d_{1} \\
a_{2} & b_{2} & d_{2} \\
a_{3} & b_{3} & d_{3}
\end{array}\right|
$$

Replace z-coefficients in D with the constants on the right of the three equations.

FKANHPREB8

Solve each system of equations by using Cramer's Rule.
2. $\left\{\begin{array}{l}x+2 y-z=-4 \\ x+4 y-2 z=-6 \\ 2 x+3 y+z=3\end{array}\right.$
$D=$
$D_{x}=$
$D_{y}=$
$D_{z}=$
3. $\left\{\begin{array}{l}3 x-2 y+z=16 \\ 2 x+3 y-z=-9 \\ x+4 y+3 z=2\end{array}\right.$

$$
D=
$$

$$
D_{x}=
$$

$$
D_{y}=
$$

$$
D_{z}=
$$

8.3.03 - i inverse Matinces

OBJECTIVES:

- Find inverse matrices
- Use inverse matrices to solve systems of equations

* Inverse Matrices

$>$ A matrix with an inverse is said to be invertible.

- An $n \times n$ matrix A is invertible if and only if $\operatorname{det} A \neq 0$.
$>$ If $\operatorname{det} A \neq 0$, then the inverse matrix exists and:

$$
A^{-1}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

FKANTPLEB8
Determine whether the matrix has an inverse. If so, find its inverse maxtrix.

1. $\left[\begin{array}{cc}7 & -2 \\ -9 & 2\end{array}\right]$
2. $\left[\begin{array}{ll}-2 & -1 \\ -8 & -4\end{array}\right]$

* Solving Systems of Linear Equations Using Matrix Equations
$>$ Let A be the coefficient matrix of a system of n linear equations in n variables given by $A X=B$, where X is the $n \times 1$ matrix of variables and B is the $n \times 1$ matrix of numbers on the right-hand side of the equations.
> If A^{-1} exists, then the system of equations has the unique solution: $X=A^{-1} B$

Solve the system:

$$
\begin{aligned}
& 4 x-2 y=0 \\
& -x+y=10
\end{aligned}
$$

Write the matrices: A and B.

$$
A=\left[\begin{array}{cc}
4 & -2 \\
-1 & 1
\end{array}\right] \quad B=\left[\begin{array}{c}
0 \\
10
\end{array}\right]
$$

Determine if A^{-1} exists.

$$
a d-b c=2
$$

Recall: A matrix is invertible if $a d-b c \neq 0$.
A^{-1} exists!
Find $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
No need to multiply by the fraction.

$$
A^{-1}=\frac{1}{2}\left[\begin{array}{ll}
1 & 2 \\
1 & 4
\end{array}\right]
$$

Write \& multiply: $X=A^{-1} \times B$
Then multiply by the fraction.
The system of equations has the unique solution: $X=A^{-1} B$

$$
\begin{gathered}
X=A^{-1} \times B=\frac{1}{2}\left[\begin{array}{ll}
1 & 2 \\
1 & 4
\end{array}\right]\left[\begin{array}{c}
0 \\
10
\end{array}\right] \\
X=\left[\begin{array}{l}
x \\
y
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
20 \\
40
\end{array}\right]=\left[\begin{array}{l}
10 \\
20
\end{array}\right] \\
x=10 \& y=20
\end{gathered}
$$

FNANHPRES8

Write the system of equations as a matrix equation, $A X=B$, and solve using an inverse matrix.
3. $\left\{\begin{array}{c}5 x+3 y=-5 \\ 7 x+5 y=-11\end{array}\right.$
$\underline{\text { Write matrix } A}$
Does A^{-1} exist?

Find A^{-1}.

Write \& multiply: $X=A^{-1} B$
4. $\left\{\begin{array}{l}x+7 y=1 \\ 2 x+5 y=-7\end{array} \quad\right.$ Write matrix $A . \quad$ Does A^{-1} exist?

Find A^{-1}.
Write \& multiply: $X=A^{-1} B$

* Using Inverses to Solve Systems of Equations w/Three Variables
$>$ If $A X=B$ has a unique solution, then $X=A^{-1} B$.
- To solve a system of equations, multiply $A^{-1} \& B$ to find X.

Solve the system:

$$
\left\{\begin{array}{l}
x-y+z=2 \\
-2 y+z=2 \\
-2 x-3 y=0.5
\end{array}\right.
$$

Write the matrices: A and B.

Given: A^{-1}

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & -2 & 1 \\
-2 & -3 & 0
\end{array}\right] \& B=\left[\begin{array}{c}
2 \\
2 \\
0.5
\end{array}\right] \\
A^{-1}=\left[\begin{array}{ccc}
3 & -3 & 1 \\
-2 & 2 & -1 \\
-4 & 5 & -2
\end{array}\right]
\end{gathered}
$$

Multiply: $X=A^{-1} \times B$

$$
X=A^{-1} \times B=\left[\begin{array}{ccc}
3 & -3 & 1 \\
-2 & 2 & -1 \\
-4 & 5 & -2
\end{array}\right]\left[\begin{array}{c}
2 \\
2 \\
0.5
\end{array}\right]
$$

The system of equations has the unique solution: $X=A^{-1} B$

$$
X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
0.5 \\
-0.5 \\
1
\end{array}\right]
$$

FNGAMPLS8

Write the system of equations as a matrix equation, $A X=B$, and solve using the inverse matrix.
5. $\left\{\begin{array}{l}x-6 y+3 z=11 \\ 2 x-7 y+3 z=14 \\ 4 x-12 y+5 z=25\end{array}\right.$

$$
A^{-1}=\left[\begin{array}{ccc}
1 & -6 & 3 \\
2 & -7 & 3 \\
4 & -12 & 5
\end{array}\right]
$$

