∻

Range

0

y = f(x)

Domain

chapter 3: functions & their transformations

3.APK.1 - DOMAIN & RANGE

OBJECTIVE: Determine the domain and range of a function given its graph

FUNCTIONS, DOMAIN, & RANGE

- A <u>function</u> from a set D to a set R is a rule that assigns to element in D a unique element of R
 - Domain—the set *D* of all inputs; the variable *x*
 - Range—the set *R* of all outputs, the variable *y*

FINDING THE DOMAIN & RANGE OF A FUNCTION *

EXAMPLES: FINDING THE DOMAIN & RANGE OF A FUNCTION GRAPHICALLY Use the graph to determine the domain and range of the function.

3. APK.2 — CHARACTERISTICS OF FUNCTIONS

OBJECTIVE: Analyze the graph of a function for: domain, range, x-intercept(s), y-intercept; intervals on which a function is increasing, decreasing, or constant; maximum & minimum values; and end behavior

CHARACTERISTICS OF FUNCTIONS

- > x-intercept(s) where the graph crosses/touches the x-axis
 - Value at y = 0 or f(x) = 0
- > y-intercept where the graph crosses the y-axis
 - Value of the function at *x* = 0
- Increasing/Decreasing/Constant Intervals
 - Use ONLY the x-values of the function to describe the interval
 - x-values represent location while y-values represent values of the function
 - (x start, x end)
 - Use parentheses; never use brackets.
 - If we use brackets and not parentheses then we are saying that the value of the function is both increasing and decreasing at the same time at the same location.

Local Extrema: Maxima & Minima \geq

Occur ONLY at points at which a function changes its increasing or decreasing behavior.

INCREASING INTERVALS:

DECREASING INTERVAL:

> End behavior

The end behavior of a function describes the behavior of the graph at the "ends" of the *x*-axis.

- Left: $\lim_{x \to -\infty} f(x) = a y$ value
- Right: $\lim_{x \to \infty} f(x) = a y$ value

EXAMPLES: ANALYZING FUNCTIONS

Use the graph of f(x) to find the following.

- 1. The domain:
- 2. The range:
- 3. The *x*-intercept:
- 4. The *y*-intercept:
- 5. Increasing interval(s):
- 6. Decreasing interval(s):
- 7. Constant interval(s):
- 8. Maximum value = ____; location: *x* = _____
- 9. Minimum value = ____; location: *x* = _____
- 10. f(-10)
- 12. End behavior: $\lim_{x \to -\infty} f(x) =$

Use the graph of f(x) to find the following.

- 14. The domain
- 15. The range
- 16. The *x*-intercept(s)
- 17. The y-intercept
- 18. Interval(s) on which f is increasing
- 19. Interval(s) on which f is decreasing
- 20. End behavior: $\lim_{x \to -\infty} f(x) =$
- 21. End behavior: $\lim_{x \to \infty} f(x) =$

- 11. Value(s) for which f(x) = 6
- 13. End behavior: $\lim_{x \to \infty} f(x) =$

3.1 - VERTICAL & HORIZONTALS SHIFTS

OBJECTIVES:

- Identify the effect on the graph of a function replacing f(x) by f(x) + k and f(x + k) for specific values of k (both positive or negative)
- Describe, write a formula, graph and interpret a function that has been shifted vertically and/or horizontally

EXPLORING TRANSLATIONS - What do you notice? What do you wonder?

Also identify the domain and range of f(x), as well as the domain and range of the transformed graphs.

	DOMAIN	RANGE
f(x)		
g(x)		

A'	'	<i>C</i> 1	y /				
g(x)			-				-
	\mathbf{V}	D'	•4-	A			
	B′		2	f(x)		C	
			_			$\langle \rangle$	_
←	4	_	_		R	U	≽
<u>–</u> b	-4	-2			04	σ	^

g(x) = f(x+8) + 3

	DOMAIN	RANGE
f(x)		
g(x)		

TRANSLATIONS (shifts)

FUNCTION NOTATION	DESCRIPTION	COORDINATE RULE	DOMAIN OR RANGE CHANGE?
y = f(x - h)			
y = f(x + h)			
y = f(x) + k			
y = f(x) - k			

Examples:

1. The graph of g(x) contains the point (-3, 0). Describe the translation and then write a formula for a translation of g that has a graph containing the point (5, 9).

2. The graph of y = f(x) is shown below. Write an equation for each related graph showing how the function has been translated.

3. Suppose that the *x*-intercepts of the graph of f(x) = 4. The domain of a function h(x) is [0, 12] and its are -5 & 3. What are the *x*-intercepts of the graph of y = f(x + 2)?

range is [-4, 2]. What is the domain and range of h(x + 5) - 12?

3.2 - VERTICAL & HORIZONTALS REFLECTIONS

OBJECTIVES:

- Identify the effect on the graph of a function replacing f(x) by -f(x) and f(-x)•
- Describe, write a formula, graph and interpret a function that has been reflected vertically and/or • horizontally

EXPLORING REFLECTIONS - What do you notice? What do you wonder?

COORDINATES OF A

COORDINATES OF E

COORDINATES OF A'

COORDINATES OF E'

COORDINATES OF A'

COORDINATES OF E'

✤ REFLECTIONS ACROSS AXES (flips)

FUNCTION NOTATION	DESCRIPTION	COORDINATE RULE	DOMAIN OR RANGE CHANGE?
y = -f(x)	Reflect over <i>x</i> -axis		
y = f(-x)	Reflect over <i>y</i> -axis		

Examples:

- 1. The graph of f(x) contains the point (2, -3). What point must lie on the reflected graph if the graph is...
 - a. reflected about the *x*-axis? b. reflected about the *y*-axis?
- 2. The domain of a function h(x) is [0, 12] and its range is [-4, 2]. What is the domain and range of -h(x - 4) + 5?

* ORDER IS IMPORTANT!

3. The graph of the parent function f(x) is given. Match the transformed function with its graph.

4. The graph of y = f(x) is shown at left. Describe the transformation and then write the equation of k(x) in terms of f(x).

3.3 - VERTICAL STRETCHES & COMPRESSIONS

OBJECTIVES:

- Identify the effect on the graph of a function replacing f(x) by kf(x) for specific values of k
- Describe, write a formula, graph and interpret a function that has been reflected vertically and/or horizontally

* EXPLORING VERTICAL SIZE CHANGES - What do you notice? What do you wonder?

Also identify the domain and range of f(x), as well as the domain and range of the transformed graphs.

✤ VERTICAL STRETCHES & COMPRESSIONS

FUNCTION NOTATION	DESCRIPTION	COORDINATE RULE	DOMAIN OR RANGE CHANGE?
y = Af(x), A > 1			
$\mathbf{y} = A\mathbf{f}(\mathbf{x}), 0 < A < 1$			

Examples:

1. The graph of f(x) contains the point (3,-2). What corresponding point is on the graph of g(x) = 3f(x-8)?

- 2. The graph of h(x) is found by vertically stretching the graph of f(x) by a factor of 7, reflecting it about the *x*-axis, and then vertically shifting it down 3 units. Find a formula for h(x) in terms of f(x).
- 3. The function g(x) is obtained from f(x) by a single transformation. Use the tables below to find a formula for g(x) in terms of f(x).

x	-4	-2	0	2	4	x	-4	-2	0	2	4
f(x)	12	-4	-2	4	6	g(x)	36	-12	-6	12	18

* ORDER IS IMPORTANT!

4. Let y = f(x) be the function whose graph is given. Describe the transformations and then sketch the graphs of the transformations.

5. The domain of a function h(x) is [0, 12] and its range is [-4, 2]. What is the domain and range of -2h(x + 1) - 3?

Write an equation for g(x) as a transformation of the function f(x).

7.1 - COMBINATIONS OF FUNCTIONS

<u>OBJECTIVES:</u> Combine functions using the algebra of functions Evaluate the combination of functions for a given value

✤ THE ALGEBRA OF FUNCTIONS

 \blacktriangleright Let *f* and *g* be two functions...

Operation	Definition	Example Let $f(x) = 2x$ and $g(x) = -x + 5$.
Addition	(f+g)(x)=f(x)+g(x)	2x + (-x + 5) = x + 5
Subtraction	(f-g)(x)=f(x)-g(x)	2x - (-x + 5) = 3x - 5
Multiplication	$(f \cdot g)(x) = f(x) \cdot g(x)$	$2x(-x+5) = -2x^2 + 10x$
Division	$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, g(x) \neq 0$	$\frac{2x}{-x+5}, x \neq 5$

EXAMPLES:

Use the given table to evaluate each given function.

1. $(f + g)(4)$	2. $(fg)(-2)$	x	-2	0	2	4	6
	$\langle f \rangle$	f(x)	1	5	11	19	29
3. $(g-f)(6)$	4. $(\frac{y}{g})(2)$	g(x)	5	1	5	17	37

Use the given graphs to evaluate each given function.

5. (f+g)(-2) 6. (fg)(2) 7. (g-f)(1)

For the given functions $f(x) = 3x - 2 \& g(x) = 2x^2$, evaluate... 8. (f + g)(3) 9. (f - g)(4)

Let $f(x) = x + 1 \& g(x) = x^2 - 4$. Write a formula for the function.

11.
$$j(x) = g(x) - 2f(x)$$

12. $k(x) = f(x)g(x)$
13. $m(x) = [f(x)]^2 + g(x)$

7.2 - INVERSE FUNCTIONS

<u>OBJECTIVES</u>: Evaluate the inverse of a function for a given value Write the formula for an inverse function

Inverse Functions

➤ If *f* is a one-to-one function with domain *D* and range *R*, then the <u>inverse function of *f*</u>, denoted f^{-1} , is the function with domain *R* and range *D* defined by: $a = f^{-1}(b)$ if and only if b = f(a)

Function:
$$f(\text{input}) = \text{output}$$
 Inverse function: $f^{-1}(\text{output}) = \text{input}$

EXAMPLES: EVALUATING A FUNCTION & ITS INVERSE

Use the table of g(t) to identify the missing function values.

1. g(0) = ?2. g(?) = 03. g(2) = ?4. $g^{-1}(0) = ?$ 5. $g^{-1}(?) = 0$ 6. $g^{-1}(4) = ?$

•	t	-3	-1	0	2	4	7
9	(†)	6	4	3	1	0	-2

Use the function f(x) graphed below to find the missing values. 7. f(3) = ?8. $f^{-1}(3) = ?$ 9. f(0) = ?10. $f^{-1}(0) = ?$ 11. f(-1)12. $f^{-1}(x) = 13$ 13. $f^{-1}(13)$

✤ How to Find the Inverse of a Function Algebraically

- Siven a formula for a function f(x), proceed as follows to find a formula for $f^{-1}(x)$
 - Replace f(x) with y
 - Swap the *x* and the *y*
 - Solve the function for *y*

EXAMPLES: FINDING THE INVERSE OF A FUNCTION

For the given function, find a formula for its inverse function.

14.
$$f(x) = \frac{1}{5}x + 2$$
 15. $f(x) = 4x^3 - 8$ 16. $f(x) = \sqrt{5x + 4}$

7.3 - COMPOSITION OF FUNCTIONS

<u>OBJECTIVES:</u> Write a composition of two functions Evaluate a composition of functions

* COMPOSITION OF FUNCTIONS

- > Two functions connected by the fact that the output of one is the input of the other.
- For two functions f(x) and g(x), the function f(g(x)) is said to be a composition of f with g.
 - The function f(g(x)) is defined by using the output of the function g as the input to the function f.

EXAMPLES: EVALUATING COMPOSITE FUNCTIONS

- 1. Given the functions $p(x) = 3 + \sqrt{x+5}$ and $q(x) = 2 + (x-1)^2$, find q(p(-1)).
- Use the graphs of *f* and *g* to evaluate each composite function.

3. The functions *j* and *k* are defined by the following sets of input and output values:

$$j = \{(0, -2), (4, 1), (3, 5), (5, 0)\}$$

$$k = \{(1, 2), (-2, 4), (5, 5), (6, -2)\}$$

4. Find: k(j(4)) = j(k(5))

EXAMPLES: WRITING COMPOSITE FUNCTIONS

4. Let $f(x) = 4x^2 - 2$ and g(x) = -3x + 1. Find a formula for g(f(x)).

Find a formula for f(g(x)).

5. Let
$$f(x) = \frac{2}{x^2 - 1} \& g(x) = \sqrt{1 - 5x}$$
 Find a formula for $f(g(x))$.