\qquad

chapter 3: functions \& +heir transformations

3.APK. 1 - DOMMIN \& RANGE

OBJECTIVE: Determine the domain and range of a function given its graph

* FUNCTIONS, DOMAIN, \& RANGE
$>$ A function from a set D to a set R is a rule that assigns to element in D a unique element of R
- Domain-the set D of all inputs; the variable x
- Range-the set R of all outputs, the variable y
* FInding the domain \& Range of a function

DOMAIN:
Using Set-Builder Notation
$\{x \mid-4 \leq x \leq 2\}$

RANGE:
$\{y \mid 1 \leq y \leq 4\}$

The set such $\quad y$ is greater than or equal to of all y that 1 and less than or equal to 4.

Using Interval Notation

$[-4,2]$.

The square brackets indicate -4 and 2 are included. Note the square brackets on the x-axis in Figure 1.25.

$$
[1,4] .
$$

The square brackets indicate 1 and 4 are included. Note the square brackets on the y-axis in Figure $\mathbf{1 . 2 5}$.

* Representing W/ Interval Notation

$$
(-\infty, \ldots)
$$

$$
(\ldots, \infty)
$$

[Brackets]
(Parentheses)

EXAMPLES: FINDING THE DOMAIN \& RANGE OF A FUNCTION GRAPHICALLY
Use the graph to determine the domain and range of the function.
1.

DOMAIN	RANGE

2.

DOMAIN	RANGE

3. 4.

DOMAIN	RANGE

DOMAIN	RANGE

3.APK. 2 - CHARICTERISTICS OF FUINCTIONS

OBJECTIVE: Analyze the graph of a function for: domain, range, x-intercept(s), y-intercept; intervals on which a function is increasing, decreasing, or constant; maximum \& minimum values; and end behavior

* Characteristics of functions

$>\boldsymbol{x}$-intercept(s) - where the graph crosses/touches the x-axis

- Value at $y=0$ or $f(x)=0$
$>\boldsymbol{y}$-intercept - where the graph crosses the y-axis
- Value of the function at $x=0$
> Increasing/Decreasing/Constant Intervals
- Use ONLY the x-values of the function to describe the interval
- x-values represent location while y-values represent values of the function
- (x start, x end)
- Use parentheses; never use brackets.
- If we use brackets - and not parentheses - then we are saying that the value of the function is both increasing and decreasing at the same time at the same location.

> Local Extrema: Maxima \& Minima

- Occur ONLY at points at which a function changes its increasing or decreasing behavior.

IncReasing intervals:
DECREASING INTERVaL:
Max of \qquad AT $X=$ \qquad
MIN OF \qquad AT $X=$ \qquad

$>$ End behavior

The end behavior of a function describes the behavior of the graph at the "ends" of the x-axis.

EXAMPLES: ANALYZING FUNCTIONS

Use the graph of $f(x)$ to find the following.

1. The domain:
2. The range:
3. The x-intercept:
4. The y-intercept:
5. Increasing interval(s):
6. Decreasing interval(s):
7. Constant interval(s):
8. Maximum value $=$ \qquad ; location: $x=$ \qquad
9. Minimum value $=$ \qquad ; location: $x=$ \qquad
10. $f(-10)$
11. End behavior: $\lim _{x \rightarrow-\infty} f(x)=$
12. Value(s) for which $f(x)=6$
13. End behavior: $\lim _{x \rightarrow \infty} f(x)=$

Use the graph of $f(x)$ to find the following.
14. The domain
15. The range
16. The x-intercept(s)
17. The y-intercept
18. Interval(s) on which f is increasing
19. Interval(s) on which f is decreasing
20. End behavior: $\lim _{x \rightarrow-\infty} f(x)=$
21. End behavior: $\lim _{x \rightarrow \infty} f(x)=$

3.1 －VERTICAL \＆HORIZONTALS SHIFTS

OBJECTIVES：

－Identify the effect on the graph of a function replacing $f(x)$ by $f(x)+k$ and $f(x+k)$ for specific values of k（both positive or negative）
－Describe，write a formula，graph and interpret a function that has been shifted vertically and／or horizontally

＊EXPLORING TRANSLATIONS－What do you notice？What do you wonder？

Also identify the domain and range of $f(x)$ ，as well as the domain and range of the transformed graphs．

$$
g(x)=f(x-4)-9
$$

	DOMAIN	RANGE
$f(x)$		
$g(x)$		

	DOMAIN	RANGE
$f(x)$		
$g(x)$		

＊TranSLations（shifts）

FUNCTION NOTATION	DESCRIPTION	COORDINATE RULE	DOMAIN OR RANGE CHANGE？
$\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x}-\boldsymbol{h})$			
$\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x}+\boldsymbol{h})$			
$\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})+\boldsymbol{k}$			
$\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{k}$			

Examples：

1．The graph of $g(x)$ contains the point $(-3,0)$ ．Describe the translation and then write a formula for a translation of g that has a graph containing the point $(5,9)$ ．
2. The graph of $y=f(x)$ is shown below. Write an equation for each related graph showing how the function has been translated.

3. Suppose that the x-intercepts of the graph of $f(x)$ are $-5 \& 3$. What are the x-intercepts of the graph of $y=f(x+2)$?
4. The domain of a function $h(x)$ is $[0,12]$ and its range is $[-4,2]$. What is the domain and range of $h(x+5)-12$?

3.2 - VERTICIL \& HORIZONTALS REFLECTIONS

OBJECTVES:

- Identify the effect on the graph of a function replacing $f(x)$ by $-f(x)$ and $f(-x)$
- Describe, write a formula, graph and interpret a function that has been reflected vertically and/or horizontally

* EXPLORING REFLECTIONS - What do you notice? What do you wonder?

COORDINATES OF A COORDINATES OF E

Graph $\boldsymbol{y}=-\boldsymbol{f}(\boldsymbol{x})$
REFLECT OVER THE X-AXIS

COORDINATES OF A' COORDINATES OF E'

Graph $\boldsymbol{y}=\boldsymbol{f}(-\boldsymbol{x})$
REFLECT OVER THE Y-AXIS

COORDINATES OF A' COORDINATES OF E'

* REFLECTIONS ACROSS AXES (flips)

FUNCTION NOTATION	DESCRIPTION	COORDINATE RULE	DOMAIN OR RANGE CHANGE?
$\boldsymbol{y}=-\boldsymbol{f}(\boldsymbol{x})$	Reflect over \boldsymbol{x}-axis		
$\boldsymbol{y}=\boldsymbol{f}(-\boldsymbol{x})$	Reflect over y-axis		

Examples:

1. The graph of $f(x)$ contains the point $(2,-3)$. What point must lie on the reflected graph if the graph is...
a. reflected about the x-axis?
b. reflected about the y-axis?
2. The domain of a function $h(x)$ is $[0,12]$ and its range is $[-4,2]$.

What is the domain and range of $-h(x-4)+5$?

* ORDER IS IMPORTANT!

(1) \Rightarrow
REFLECTION ABOUT
Y-AXIS
$2 \Rightarrow$
HORIZONTAL TRANSLATION
$\xi \Rightarrow$
G \Rightarrow
3
VERTICAL
TRANSLATIONS
3. The graph of the parent function $f(x)$ is given. Match the transformed function with its graph.
$y=f(-x)$
$y=-f(x)$
$y=f(-x)+3$
$y=-f(x-1)$
$y=-f(-x)$

(a)

(c)

(b)

(d)

(e)

4. The graph of $y=f(x)$ is shown at left. Describe the transformation and then write the equation of $k(x)$ in terms of $f(x)$.

3.3 - VERTICLL STRETCHES \& COMPRESSIONS

OBJECTIVES:

- Identify the effect on the graph of a function replacing $f(x)$ by $k f(x)$ for specific values of k
- Describe, write a formula, graph and interpret a function that has been reflected vertically and/or horizontally

* EXPLORING VERTICAL SIZE CHANGES - What do you notice? What do you wonder?

Also identify the domain and range of $f(x)$, as well as the domain and range of the transformed graphs.

$$
g(x)=\frac{1}{2} f(x)
$$

$$
g(x)=4 f(x)
$$

$f(x)$		$g(x)$	
DOMAIN	RANGE	DOMAIN	RANGE

$f(x)$		$g(x)$	
DOMAIN	RANGE	DOMAIN	RANGE

VERTICAL STRETCHES \& COMPRESSIONS

FUNCTION NOTATION	DESCRIPTION	COORDINATE RULE	DOMAIN OR RANGE CHANGE?
$\boldsymbol{y}=A \boldsymbol{f}(\boldsymbol{x}),\|A\|>1$			
$\boldsymbol{y}=A \boldsymbol{f}(\boldsymbol{x}), 0<\|A\|<1$			

Examples:

1. The graph of $f(x)$ contains the point $(3,-2)$. What corresponding point is on the graph of $g(x)=3 f(x-8)$?
2. The graph of $h(x)$ is found by vertically stretching the graph of $f(x)$ by a factor of 7 , reflecting it about the x axis, and then vertically shifting it down 3 units. Find a formula for $h(x)$ in terms of $f(x)$.
3. The function $g(x)$ is obtained from $f(x)$ by a single transformation. Use the tables below to find a formula for $g(x)$ in terms of $f(x)$.

x	-4	-2	0	2	4
$f(x)$	12	-4	-2	4	6

x	-4	-2	0	2	4
$g(x)$	36	-12	-6	12	18

* ORDER IS IMPORTANT!
(\Rightarrow
REFLECTION ABOUT
y-AXIS
REFLECTION ABOUT
y-AXIS
(2) \Rightarrow
$3 \Rightarrow$
$\{\Rightarrow$
HORIZONTAL TRANSLATION
VERTICAL STRETCH/ compression
REFLECTION ABOUT X-AXIS
b
VERTICAL TRANSLATIONS

4. Let $y=f(x)$ be the function whose graph is given. Describe the transformations and then sketch the graphs of the transformations.

$$
y=-\frac{1}{2} f(x+2)-3
$$

Transformations:

5. The domain of a function $h(x)$ is $[0,12]$ and its range is $[-4,2]$.

What is the domain and range of $-2 h(x+1)-3$?

Write an equation for $g(x)$ as a transformation of the function $f(x)$.
6.

7.

7.1 - COMBINATIONS OF FINCTIONS

OBJECTIVES: Combine functions using the algebra of functions
Evaluate the combination of functions for a given value

* The AlgEbRa of functions

$>$ Let f and g be two functions...

Operation	Definition	Let $f(x)=2 x$ and $g(x)=-x+5$.
Addition	$(f+g)(x)=f(x)+g(x)$	$2 x+(-x+5)=x+5$
Subtraction	$(f-g)(x)=f(x)-g(x)$	$2 x-(-x+5)=3 x-5$
Multiplication	$(f \cdot g)(x)=f(x) \cdot g(x)$	$2 x(-x+5)=-2 x^{2}+10 x$
Division	$\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, g(x) \neq 0$	$\frac{2 x}{-x+5}, x \neq 5$

EXAMPLES:

Use the given table to evaluate each given function.

1. $(f+g)(4)$
2. $(f g)(-2)$
3. $(g-f)(6)$
4. $\left(\frac{f}{g}\right)(2)$

x	$\mathbf{- 2}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{6}$
$f(x)$	$\mathbf{1}$	5	11	19	29
$g(x)$	5	1	5	17	37

Use the given graphs to evaluate each given function.
5. $(f+g)(-2)$
6. $(f g)(2)$
7. $(g-f)(1)$

For the given functions $f(x)=3 x-2 \& g(x)=2 x^{2}$, evaluate...
8. $(f+g)(3)$
9. $(f-g)(4)$

10. $(f g)(2)$

Let $f(x)=x+1 \& g(x)=x^{2}-4$. Write a formula for the function.
11. $j(x)=g(x)-2 f(x)$
12. $k(x)=f(x) g(x)$
13. $m(x)=[f(x)]^{2}+g(x)$

1.2 - INVERSE FLINCTIONS

OBJECTIVES: Evaluate the inverse of a function for a given value
Write the formula for an inverse function

* Inverse functions

$>$ If f is a one-to-one function with domain D and range R, then the inverse function of f, denoted f^{-1}, is the function with domain R and range D defined by: $a=f^{-1}(b)$ if and only if $b=f(a)$

Function: \boldsymbol{f} (input) $=$ output
Inverse function: $\boldsymbol{f}^{\mathbf{- 1}}$ (output) $=$ input

EXAMPLES: EVALUATING A FUNCTION \& ITS INVERSE

Use the table of $g(t)$ to identify the missing function values.

1. $g(0)=$?
2. $g(?)=0$
3. $g(2)=$?

t	-3	-1	0	2	4	7
$g(t)$	6	4	3	1	0	-2

4. $g^{-1}(0)=$?
5. $g^{-1}(?)=0$
6. $g^{-1}(4)=$?

Use the function $f(x)$ graphed below to find the missing values.

7. $f(3)=$?
8. $f^{-1}(3)=$?
9. $f(0)=$?
10. $f^{-1}(0)=$?

* HOW TO FIND THE Inverse of a Function algebraically

$>$ Given a formula for a function $f(x)$, proceed as follows to find a formula for $f^{-1}(x)$

- Replace $f(x)$ with y
- Swap the x and the y
- Solve the function for y

EXAMPLES: FINDING THE INVERSE OF A FUNCTION

For the given function, find a formula for its inverse function.
14. $f(x)=\frac{1}{5} x+2$
15. $f(x)=4 x^{3}-8$
16. $f(x)=\sqrt{5 x+4}$

7.3 - COMPOSITION OF FIINCTIONS

OBJECTIVES: Write a composition of two functions

Evaluate a composition of functions

* COMPOSITION OF FUNCTIONS

$>$ Two functions connected by the fact that the output of one is the input of the other.
$>$ For two functions $f(x)$ and $g(x)$, the function $f(g(x))$ is said to be a composition of f with g.

- The function $f(g(x))$ is defined by using the output of the function g as the input to the function f.

EXAMPLES: EVALUATING COMPOSITE FUNCTIONS

1. Given the functions $p(x)=3+\sqrt{x+5}$ and $q(x)=2+(x-1)^{2}$, find $q(p(-1))$.
2. The functions j and k are defined by the following sets of input and output values:

$$
\begin{gathered}
j=\{(0,-2),(4,1),(3,5),(5,0)\} \\
k=\{(1,2),(-2,4),(5,5),(6,-2)\}
\end{gathered}
$$

4. Find: $k(j(4))$
$j(k(5))$
5. Use the graphs of f and g to evaluate each composite function.
$f(g(-1))$
$f(g(1))$
$g(f(0))$
$g(f(-1))$

EXAMPLES: WRITING COMPOSITE FUNCTIONS

4. Let $f(x)=4 x^{2}-2$ and $g(x)=-3 x+1$.

Find a formula for $g(f(x))$.
Find a formula for $f(g(x))$.
5. Let $f(x)=\frac{2}{x^{2}-1} \& g(x)=\sqrt{1-5 x} \quad$ Find a formula for $f(g(x))$.

