Name:

CHAPTER 4: QUADRATIC FUNCTIONS 4.1 · Variable Rates of Change

<u>Objectives</u>

- Determine if a quadratic equation represents a data set
- Determine the concavity and increasing/decreasing behavior of a function from a table

* Variable Rate of Change

Any function whose rate of change is not constant is said to have a variable rate of change.

* Successive Differences of Functions

- > Analyzing First Differences
 - LINEAR constant rate of change (first differences)
 - **CONCAVE UP** rate of change (first differences) increases
 - **CONCAVE DOWN** rate of change (first differences) decreases
- > Analyzing second Differences
 - **QUADRATIC** constant second differences

Examples: Numerical representations of a function are shown in a table. Identify whether the function is linear or quadratic; its increasing/decreasing intervals; and its concavity.

1. f(x)

x	f(x)	FIRST DIFFERENCES	SECOND DIFFERENCES
-2	20		
-1	2		
0	0		
1	14		
()			

2. g(x)

x	g(x)	FIRST DIFFERENCES	Second Differences
-3	8		
-2	6		
-1	4		
0	2		

LINEAR OR QUADRATIC?

INCREASING INTERVAL: ____ < x < ____

DECREASING INTERVAL: ____ < x < ____

CONCAVE UP / CONCAVE DOWN / NEITHER

LINEAR OR QUADRATIC?

INCREASING INTERVAL: ____ $< x < ____$

DECREASING INTERVAL: _____ $< x < ____$

CONCAVE UP / CONCAVE DOWN / NEITHER

Chapter 4: Quadratic Functions

4.3.D1 · Intro to quadratic Functions

<u>Objectives</u>

Determine the properties and characteristics of a quadratic function given graphically, numerically, and algebraically

* Quadratic Functions

- > The graph of any quadratic function is called a **PARABOLA**.
 - Its graph is either concave up (a > 0) or concave down (a < 0).
 - The **VERTEX** (*h*, *k*) is the turning point and, also, where a maximum or minimum value of the function occurs.
 - The y-value of the vertex is the maximum or minimum of the function.
 - The vertical line that passes through the vertex of a parabola and divides the parabola into two symmetrical parts is the **AXIS OF SYMMETRY**.
 - Intercepts
 - Quadratic functions may have two, one, or no *X*-INTERCEPTS. The *x*-intercept(s) can be found algebraically by solving f(x) = 0 or identified from the graph where the parabola crosses or touches the *x*-axis.
 - The *Y*-INTERCEPT can be found by evaluating f(0) or identified from the graph where the parabola crosses the *y*-axis.

* Formulas for Quadratic Functions

standard Form	Factored/Intercept Form
$f(x) = ax^2 + bx + c$	f(x) = a(x-p)(x-q)

$$f(x) = -2x^{2} + 12x - 10$$

$$f(x) = -2(x - 1)(x - 5)$$

$$f(x) = -2(x - 3)^{2} + 8$$

x	f(x)
0	-10
1	0
2	6
3	8
4	6
5	0
6	-10
5	0

The same quadratic function is given graphically, numerically (table), and algebraically with a function formula in standard, factored, and vertex form. Look for the graph's key characteristics – vertex, x-intercepts, y-intercept, and axis of symmetry – in the table and function formulas. Where do you see these characteristics within the table and function formulas?

Vertex Form $f(x) = a(x - h)^2 + k$ Identify the vertex, *x*-intercepts, *y*-intercept, and axis of symmetry of each quadratic function.

SUMMARIZE: Identify the features of the graph of a quadratic function that can be determined from the quadratic function's formula given in...

STANDARD FORM $f(x) = ax^2 + bx + c$	VERTEX FORM $f(x) = a(x - h)^2 + k$	INTERCEPT FORM f(x) = a(x-p)(x-q)

FEATURES INCLUDE: DIRECTION OF OPENING, ZEROS/X-INTERCEPTS, Y-INTERCEPT, AXIS OF SYMMETRY & VERTEX.

<<Prep Work>> INVESTIGATION: Quadratic Function Forms

Consider the following quadratic functions: Identify the feature(s) you KNOW the graph will have based on the function formula ALONE.

$y = x^2 + 2x - 35$	$y = (x+4)^2 - 1$	y = (x-4)(x-4)
$y = -(x-4)^2 + 1$	$y = -x^2 - 6x - 16$	$y = -\frac{1}{2}(x - 3)(x - 5)$

4.3.D2 · Intercepts of Quadratic Functions

<u>Objectives</u>

- Determine the intercepts of a quadratic function given its equation
- * Write the formula of a quadratic function given analytically, graphically, numerically, and verbally

* Factored/Intercept Form: f(x) = a(x-p)(x-q)

- > The *x*-intercepts are (p, 0) & (q, 0)
 - Use the ZERO PRODUCT PROPERTY
 - Let *a* and *b* be real numbers. If ab = 0, then a = 0 or b = 0.
 - Set each factor equal to 0 and solve.
- > Find the *y*-intercept by computing f(0).

Example: For the quadratic function, determine the direction of opening and find the zeros (if any) and the *y*-intercept.

1. h(x) = -3(x-2)(4x+3) Direction of opening: Zero(s): Y-intercept:

* Writing Equations of Quadratic Functions

- > If the *x*-intercepts, *p* and *q*, and one other point on the graph (x, y) of a parabola are known, you can write the equation of the parabola in factored form.
 - Substitute these values into the factored form of the equation and solve for *a*.

$$y = a(x-p)(x-q)$$

• Write the equation using only *a*, *p*, and *q*.

Examples: Write a quadratic function, in factored form, for the parabola shown or described.

3. *x*-intercepts are at x = -1 & x = 2 and (-2, 16) is on the function's graph.

 $ax^{2}+bx+c=0 \rightarrow x=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}$

* Standard Form of a Quadratic Function: $f(x) = ax^2 + bx + c$

- > Finding Intercepts of Quadratic Functions in Standard Form
 - Find any *x*-intercepts by solving f(x) = 0
 - Solve using the **QUADRATIC FORMULA**
- > Vertical/y-intercept: (0, c)

Examples: For the quadratic function, find the x-intercepts (rounded to 2 decimal places, if necessary) & the y-intercept.

4.
$$f(x) = -x^2 + 8x + 22$$

5. $g(x) = 3x^2 + 3x - 16$

X-INTERCEPTS:	Y-INTERCEPT:	X-INTERCEPTS:	Y-INTERCEPT:

* Vertex Form of a Quadratic Function: $f(x) = a(x-h)^2 + k$

- > Finding Intercepts of Quadratic Functions in Vertex Form
 - Find any *x*-intercepts by solving f(x) = 0
 Use the *SQUARE ROOT PROPERTY*Set the function equal to 0: a(x − h)² + k = 0 Isolate the quadratic expression on one side of the equation Take the square root of both sides. Don't forget the ±! Solve for x and simplify.
 (x-5)² = 9 x-5=±√9 x-5=±3 x=5±3 x=8 or x = 2

Examples: For the quadratic function, find the x-intercepts (rounded to 2 decimal places, if necessary) & the y-intercept.

6.
$$f(x) = 2(x+4)^2 - 50$$

7. $f(x) = -2(x+5)^2 + 10$

X-INTERCEPTS:

Y-INTERCEPT:

X-INTERCEPTS:

Y-INTERCEPT:

4.3.D3 · Intercepts & Factoring

<u>Objectives</u>

- Convert quadratic functions in standard form to intercept form and find x-intercepts
- Factor trinomials of the form $x^2 + bx + c$ and $ax^2 + bx + c$
- * FACTORING A DIFFERENCE OF TWO SQUARES: $a^2 b^2$ $a^2 - b^2 = (a + b)(a - b)$

Examples: Write the quadratic function in factored form.

- 1. $q(x) = x^2 64$ 2. $u(x) = -2x^2 + 162$ 3. $a(x) = 4x^2 - 36$
- Finding Zeros Via Factoring: $y = x^2 + bx + c$ > An example:

$y = x^2 + 5x - 24$		
-24		
8&-3	5	
y = (x+8)(x+8)	- 3)	
x + 8 = 0	x - 3 = 0	
x = -8	x = 3	

REMEMBER TO ALWAYS LOOK FOR COMMON FACTORS FIRST!

FIND THE FACTORS OF C THAT ADD UP THE TO BE THE MIDDLE TERM B WRITE AS A PRODUCT OF TWO BINOMIALS

USE THE ZERO PRODUCT PROPERTY TO FIND THE ZEROS. SET EACH FACTOR EQUAL TO ZERO & SOLVE FOR X.

Examples: Write the quadratic function in factored form and then find its *x*-intercepts using the Zero Product Property.

4. $d(x) = x^2 + 8x - 20$ 5. $r(x) = -x^2 - 7x - 10$ 6. $t(x) = 2x^2 - 20x + 50$

◆ Finding Zeros Via Factoring: y = ax² + bx + c
 ▶ DEFOIL/A-C METHOD

 Multiply the first and last terms: ax² × c
 Find the factors that multiply to be the product (in step 1) and that add to be the middle term: bx
 Organize this information with an X-box →
 Replace the middle term with these factors
 Factor by grouping

> THE BOX METHOD

- 1. Multiply the first and last terms: $ax^2 \times c$
- 2. Find the factors that multiply to be the product (in step 1) and that add to be the middle term: bx
 - Organize this information with an X-box ightarrow

- 3. Draw a 2×2 square
- 4. Put the first term of the trinomial ax^2 in the upper-left corner and the constant term, *c*, in the lower-right corner.
- 5. Put the factors (from step 2) in the two remaining squares.
- 6. Find the GCF of each row & each column
- 7. Write the result as a product of two binomials.

AN EXAMPLE: $3x^2 - 4x - 7$

Examples: Write the quadratic function in factored form and then find its *x*-intercepts using the Zero Product Property.

7. $q(x) = 2x^2 + 13x + 21$ 8. $c(x) = 6x^2 - 21x + 9$

FACTOR

2

 $ax^2 \times c$

bx

GCF of

row l

GCF of

row 2

FACTOR

FACTOR

1

С

GCF of

column 2

 ax^2

FACTOR

2

GCF of

column I

4.3.D4 \cdot the Vertex of a Quadratic Function

<u>Objectives</u>

- ✤ Determine the properties and characteristics of a quadratic function given its equation in vertex form
- Write equations of quadratic functions using its vertex and a point on its graph

* Vertex Form of a Quadratic Function: $f(x) = a(x - h)^2 + k$, where $a \neq 0$

Example 1: Consider the quadratic function $f(x) = -2(x+5)^2 + 10$.

- a. What is the function's axis of symmetry?
- b. What is the function's vertex?
- c. What is the function's range?
- d. Does the function have a maximum or minimum value? What is that value and where is it located?
- e. On what interval is the function increasing?
- f. On what interval is the function decreasing?

* Writing Equations of Quadratic Functions

- > If the vertex (h, k) and one other point on the graph (x, y) of a parabola are known, you can write the equation of the parabola in vertex form.
 - Substitute these values into the vertex form of the equation and solve for *a*.

$$y = a(x-h)^2 + k$$

• Write the equation using only *a*, *h*, and *k*.

Example 2: Write an equation for the parabola whose vertex is at (-1, 4) and passes through (2, 1).

* Standard Form of a Quadratic Function

> Complete the square to write the function in its corresponding vertex form.

Standard Form \rightarrow Vertex Form: Completing the Square (a = 1)

Getting Ready:

Sort/organize leaving a positive blank after the linear term and a negative blank after the constant term AND set up the binomial square.

<u>Completing the Square</u>:

- 1. Half the middle
- 2. Write it down
- 3. Square it
- 4. Multiply by a
- 5. Subtract & simplify

Example: Write the quadratic function in vertex form. Then determine the following characteristics: the direction in which the parabola opens, the coordinates of the vertex, the *y*-intercept, and the range.

3. $f(x) = x^2 + 18x + 84$	DIRECTION OF OPENING:	VERTEX:
	Y-INTERCEPT:	Range:

Standard Form \rightarrow Vertex Form: Completing the Square $(a \neq 1)$

Getting Ready:

Factor out the quadratic coefficient from the first two terms. Sort/organize leaving a positive blank after the linear term and a negative blank after the constant term AND set up the binomial square.

<u>Completing the Square</u>:

- 1. Half the middle
- 2. Write it down
- 3. Square it
- 4. Multiply by a
- 5. Subtract & simplify

Examples: Write the quadratic function in vertex form. Then determine the vertex and the range.

4.
$$f(x) = 2x^2 - 16x + 27$$

5. $g(x) = -4x^2 + 8x + 2$

VERTEX:

VERTEX:

RANGE:

* Factored/Intercept Form of a Quadratic Function

Identify the *x*-intercepts, the coordinates of the vertex and the equation of the axis of symmetry from the graph.

summarize your findings: How can we find the axis of symmetry and vertex of a parabola if we know it's x-intercepts: p & q?

Examples: Determine the following characteristics: the direction in which the parabola opens, the equation of the axis of symmetry, the coordinates of the vertex, and the range.

6. g(x) = 5(x+1)(x+2)7. h(x) = -4(x-7)(x-3)

DIRECTION OF OPENING:	AXIS OF SYMMETRY:	DIRECTION OF OPENING:	AXIS OF SYMMETRY:
VERTEX:	Range:	VERTEX:	Range:

4.2 · Modeling With Quadratic Functions

<u>Objective</u>:

Construct and use quadratic models to predict unknown results and interpret these findings in a real-world context

Examples:

- 1. A swim team member performs a dive from a 14-foot-high springboard. The quadratic function $h = -x^2 + 6x + 14$ and the parabola (at right) shows the path of her dive.
 - a. What is the diver's maximum height? At what distance from the springboard does the diver reach that height?

What parabolic property would you need to identify?

x-intercepts *y*-intercept vertex

How would you identify this feature, algebraically, using the function formula? Answer the problem:

b. What is the diver's horizontal distance from the springboard when she hits the surface of the water? What parabolic property would you need to identify?

x-intercepts *y*-intercept vertex

How would you identify this feature, algebraically, using the function formula? Answer the problem:

c. Identify a reasonable domain – the *x*-values that make sense for the given scenario. What parabolic property would you need to identify?

x-intercepts *y*-intercept vertex Answer the problem:

d. Identify a reasonable range – the *y*-values that make sense for the given scenario. What parabolic property would you need to identify?

x-intercepts *y*-intercept vertex Answer the problem:

* Vertical Motion Problems

- > Height of a **DROPPED OBJECT**: $h = -16t^2 + h_0$
 - h_0 is the initial height
- > Height of an OBJECT LAUNCHED OR THROWN: $h = -16t^2 + v_0t + h_0$
 - v_0 is the initial velocity

Examples:

- 2. A soccer player passes the ball to a teammate with an initial velocity of 16 feet per second, and the teammate kicks the ball from a height of 4 feet.
 - a. Write a function that represents the height of the ball (in feet) *t* seconds after it is kicked.
 - b. Calculate the time at which the ball reaches its maximum height.
 - c. What is the maximum height of the ball?
 - d. Assuming no one touches the ball after it is kicked, determine the time when the ball falls to the ground.
 - e. Identify a reasonable domain for the function.
 - f. Identify a reasonable range for the function.
 - g. Determine the times when the ball is higher than 6 feet.
- 3. An architect is designing a tunnel and is using the function $y = -0.12x^2 + 2.4x$ to determine the shape of the tunnel's entrance, as shown in the figure. In this model, y is the height of the entrance (in feet) and x is the distance (in feet) from one end of the entrance.
 - a. How wide is the tunnel's entrance at its base?
 - b. What is the vertex? What does it represent?
 - c. Could a truck that is 14 feet tall pass through the tunnel? Explain.

