	Chapter 5 Power, Polynomial \& Rational Functions Cornell Notes/Summary Sheet					Name: Period:		
$\begin{aligned} a^{m} a^{n} & =a^{m+n} \\ \frac{a^{m}}{a^{n}} & =a^{m-n} \end{aligned}$	$m n \quad(a b)$ $\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$			$=a^{-}$	$=$		$\left(\frac{a}{b}\right)^{-m}$	$\begin{aligned} & =x^{\frac{m}{n}} \\ & \left(\frac{b}{a}\right)^{m} \end{aligned}$
$\text { Lesson } 5.2 \text { - Big Ideas }$ - Power functions	Your Notes							
- Direct, inverse \& joint variation	Varies	c+ly			s inv			jointly
- The end behavior/limits of powers functions - Analyzing of power functions: the effects of $k \& a$ on the graph	$\frac{\lim _{x \rightarrow-\infty} f(x)}{\lim _{x \rightarrow \infty} f(x)}$	x^{E}			x^{-E}	x^{-0}	$x^{1 / E}$	$x^{1 / 0}$
Lesson 5.1: Big Ideas - Successive differences of polynomial functions	Your Notes y-values	$\|$1 	ffe	nces	2^{n}	ences	$3^{\text {rd dif }}$	nces
- Long-run/end behavior of polynomial functions - The Leading Term Test	$\begin{gathered} \lim _{x \rightarrow-\infty} f(x) \\ \lim _{x \rightarrow \infty} f(x) \end{gathered}$	Pos		Negat	ative	Positive	Odd Ne	tive

- Short-run behavior of polynomial functions
- Multiplicity and x-intercepts
- Finding zeros/roots/ x-intercepts of polynomial functions
- Constant $/ y$-intercept
- Sketching a polynomial function
- Finding a formula for a polynomial function
- Synthetic division

Lesson 5.3 - Big Ideas

- Rational functions
- Long-run/end behavior of rational functions
- Horizontal asymptotes
- Domain
- Vertical asymptotes
- Horizontal/x-intercepts
- Vertical/ y-intercept
- Holes
- Graphing a rational function
- Finding a formula for a rational function

Your Notes

Comparison Test	$N^{\circ}=D^{\circ}$	$N^{\circ}<D^{\circ}$	$N^{\circ}>D^{\circ}$
End Behavior			
Horizontal Asymptote			

(1) End behavior asymptote/ horizontal asymptote	Compare the degrees of the numerator \& denominator. If $N^{\circ}<D^{\circ}$, then $y=0$. If $N^{\circ}=D^{\circ}$, then $y=$ ratio.
(2) 4-intercept	Plug 0 in for x \& calculate.
3 Factor the numerator and denominator	
(4) Identify the domain	Where does the denominator equal 0?
(5) Cancel out any common factors; write the "reduced function"	
(6) x-coordinate of hole	Zeros of the common factor(s)
y-coordinate of hole	Plug hole's x-coordinate into reduced function
(0) vertical asymptote(s)	zeros of the remaining factor(s) in the denominator
8 x-intercept(s)	zeros of the remaining factor(s) in the numerator

