POWER FUNCTIONS CIRCUIT

Begin by completing the problem in cell #1. Search for your answer in the remaining cells. Put #2 in the problem blank: #_____. Work that question and proceed in this manner until you complete the circuit.

Answer: $4x^2$

1 Write the power function in the form kx^a .

$$f(x) = \frac{-2x^{-1}}{-x^{-3}}$$

Answer: $3x^{1/2}$

#____ Write the power function in the form kx^a .

$$f(x) = -5x^{10}(-2x^2)^4$$

Answer: $27x^{-15}$

#____ Write the power function in the form kx^a .

$$f(x) = 4x\sqrt[4]{x^7}$$

Answer: x^{-11}

Write the power function in the form kx^a .

$$f(x) = \frac{-2x^2 \cdot 3x^4}{-3x^{-4}}$$

Answer: $-\frac{1}{2}x^{-1}$

#____ Write the power function in the form kx^a .

$$f(x) = \frac{8x^4}{(-x^2)^4 \cdot (-x^{-1})^5}$$

Answer: $9x^{24}$

#____ Write the power function in the form kx^a .

$$f(x) = \frac{6x^{10} \cdot (-x)^7}{(x^9)^2}$$

Answer: $-5x^{-4}$

Write the power function in the form kx^a .

$$f(x) = \sqrt{16x} \cdot 4x^2 \cdot x^{-1}$$

Answer: $2x^2$

#____ Write the power function in the form kx^a .

$$f(x) = \frac{2x^2}{5x^4}$$

Answer: 45

Write the power function in the form kx^a .

$$f(x) = \left(\frac{x^3}{-2x^4}\right)^2$$

Answer: 160

#____ Write the power function in the form kx^a .

$$f(x) = \sqrt[3]{64x^6}$$

Answer: −10

#____ Write the power function in the form kx^a .

$$f(x) = \frac{2x^2}{\sqrt{16x}}$$

Answer: 90

#____ Write the power function in the form kx^a .

$$f(x) = \frac{3x}{\sqrt{x}}$$

Answer:	9x ⁶	Answer: $\frac{1}{2}x^{3/5}$
#	If y varies jointly as z and the square root of x; $y = 15$ when $z = 2 \& x = 4$. Find y when $z = 4 \& x = 9$.	# If x varies directly as y and inversely as the cube of z; $x = 10$ when $y = 4 \& z = 12$. Find x when $y = 8 \& z = 6$.
Answer:	$-6x^{-1}$	Answer: $2x^{10}$
#	Write the power function in the form kx^a . $f(x) = \left(\frac{x^2 \cdot 3x}{(x^2)^4}\right)^3$	# Write the power function in the form kx^a . $f(x) = \frac{x \cdot 2x}{-4x^3}$
Answer:	2 _x -2	Answer: $-8x$
	Write the power function in the form kx^a . $f(x) = (x^3)^{-3} \cdot (2x^3)^4$	# Write the power function in the form kx^a . $f(x) = \frac{5x^2 \cdot x^{-3}}{-x^3}$
Answer:	$4x^{11/4}$	Answer: $16x^{3/2}$
#	Given that y varies inversely as x ; $y = 5$ when $x = 4$. Find x when $y = -2$.	# If y varies jointly as z and the square of x; y = 15 when $z = 4 & x = 2$. Find y when z = 6 & x = 4.
Answer:	$16x^3$	Answer: $\frac{1}{2}x^{3/2}$
#	Write the power function in the form kx^a . $f(x) = (-3x^4)^2 \cdot x^{-2}$	# Write the power function in the form kx^a . $f(x) = \sqrt[5]{\frac{x^3}{32}}$
Answer:	$-80x^{18}$	Answer: $\frac{1}{4}x^{-2}$
#	Write the power function in the form kx^a . $f(x) = (-3x^2 \cdot x^{10})^2$	# Write the power function in the form kx^a . $f(x) = \frac{(x^4)^{-2}}{x^3}$