<i>Name:</i>	
CHAPTER P: PREREQUISITES	
Notes Packet	

P.1 REAL NUMBERS

<u>**Objectives:**</u> Write inequalities; apply the basic properties of algebra; and work with exponents and scientific notation

- **d** Representing Real Numbers
 - ≻ <u>A real number</u>
 - Natural (or counting) numbers
 - Whole numbers

- RATIONAL NUMBERS

- Integers
 Rational numbers -
 - A decimal in rational form, terminates OR is infinitely repeating
 - e.g. 7/4 = 1.75 (terminates)
 - e.g. $\frac{4}{11} = 0.3636363...$ (infinitely repeats) The real number line: $-\sqrt{3}$ O π -5 -4 -3 -2 -1 O 1 2 3 4 5 -5 Negative real numbers -5 real numbers
- Irrational numbers -
 - A decimal in irrational form, does not terminate NOR does it repeat
- **d** Order & Interval Notation
 - \succ The set of real numbers is <u>ordered</u>.
 - Trichotomy Property:
 - Let a & b be any two real numbers. Exactly one of the following is true: a < b, a = b, or a > 0
 - Inequalities describe intervals
 - Bounded Intervals of Real Numbers
 - Let a & b be real numbers with a < b:

Interval Notation	Inequality Notation	
[<i>a</i> , <i>b</i>]	$a \le x \le b$	Write vour own
(<i>a</i> , <i>b</i>)	a < x < b	summary of what you see here.
[<i>a</i> , <i>b</i>)	$a \le x < b$	
(<i>a</i> , <i>b</i>]	$a < x \le b$	

- > Unbounded Intervals of Real Numbers
 - Let a & b be real numbers:

Interval Notation	Inequality Notation	
$[a,\infty)$	$x \ge a$	Write your own
(a,∞)	x > a	summary of what
(- ∞, <i>b</i>]	$x \leq b$	you see here.
(- ∞, <i>b</i>)	x < b	······

Each of these intervals has exactly one endpoint: a or b

d Basic Properties of Algebra

> The following properties hold for real numbers, variables & algebraic expressions:

Let *u*, *v*, and *w* be real numbers, variables, or algebraic expressions.

1. Commutative property	4. Inverse property
Addition: $u + v = v + u$	Addition: $u + (-u) = 0$
Multiplication: $uv = vu$	Multiplication: $u \cdot \frac{1}{u} = 1, u \neq 0$
2. Associative property	5. Distributive property
Addition:	Multiplication over addition:
(u + v) + w = u + (v + w)	u(v + w) = uv + uw
Multiplication: $(uv)w = u(vw)$	(u + v)w = uw + vw
3. Identity property	Multiplication over subtraction:
Addition: $u + 0 = u$	u(v - w) = uv - uw
Multiplication: $u \cdot 1 = u$	(u - v)w = uw - vw

d Integer Exponents

> Properties of Exponents:

$u^m u^n = u^{m+n}$	$u^0 = 1$	
$(uv)^m = u^m v^m$	$(u^m)^n = u^{mn}$	<i>I hese properties are</i> <i>on your semester</i>
$u^{-n} = \frac{1}{u^n}$	$\frac{u^m}{u^n} = u^{m-n}$	summary sheet.
$\left(\frac{u}{v}\right)^m = \frac{u^m}{v^m}$		

ð Scientific Notation

Any positive number can be written in <u>scientific notation</u>,

 $c \times 10^m$, where $1 \le c < 10$ and *m* is an integer

- Positive exponent: moves the decimal point of c to the right m places
- Negative exponent: moves the decimal point of c to the left m places

Examples: Converting Between Intervals & Inequalities

Convert interval notation to inequality notation or vice versa. Find the endpoints & state whether the interval is bounded & open or closed. Then graph the interval.

Examples: Simplifying Expressions Involving Powers

Use the properties of exponents to simplify the expression. Assume that the variables in denominators are nonzero.

6.
$$(2ab^3)(5a^2b^5)$$

7.
$$\frac{u^2 v^{-2}}{u^{-1} v^3}$$
 8. $\left(\frac{x^2}{2}\right)^{-3}$

Examples: Using Scientific Notation

Use the properties of exponents & simplify using scientific notation.

9.
$$\frac{(1.35 \times 10^{-7})(2.41 \times 10^8)}{1.25 \times 10^9}$$

P.2 CARTESIAN COORDINATE SYSTEM

<u>Objectives</u>: Graph points, find distances and midpoints on a number line and in the coordinate plane, and write standard-form equations of circles.

- ð The Cartesian Coordinate System
 - \succ An association between the points in a plane & ordered pairs of real numbers
 - AKA the rectangular coordinate system
- Absolute Value of a Real Number

 \succ The absolute value of a real number suggests its _____ (size).

$$\int a, \text{ if } a > 0$$

- Definition: $|a| = \begin{cases} -a \text{ if } a < 0 \\ 0, \text{ if } a = 0 \end{cases}$
- Properties of Absolute Value
 - Let a & b be real numbers:

1.
$$|a| \ge 0$$

2. $|-a| = |a|$
4. $\left|\frac{a}{b}\right| = \frac{|a|}{|b|}, b \ne 0$

ð Distance Formulas

- Distance Formula (Number Line)
 - Let a and b be real numbers. The distance between a and b is _____.
 - Note that |a b| = |b a|.
- Distance Formula (Coordinate Plane)
 - The distance d between points $P(x_1, y_1)$ and $Q(x_2, y_2)$ in the coordinate plane is:
- Using an Inequality to Express Distance
 - "the distance between x & -3 is less than 9"
 - •
- ð Midpoint Formulas
 - Midpoint Formula (Number Line)
 - The midpoint of the line segment with endpoints *a* and *b* is:
 - Midpoint Formula (Coordinate Plane)
 - The midpoint of the segment with endpoints (a, b) and (c, d) is:

Examples: Finding Distance & the Midpoint between Two Points

Find the distance between and the midpoint of the line segment with the given endpoints.

- 1. -9.3, 10.6
- 2. (-3, -1), (5, -1)

∂ Equations of Circles

- ► A circle is...
 - The standard form equation of a circle with center (h, k) & radius r is:

Examples: Finding Standard Form Equations of Circles Find the standard form equation of the circle.

3. Center (-1, -4), radius 3

Find the center and radius of the circle.

4. $(x-3)^2 + (y+1)^2 = 36$

Examples: Using Coordinates, Distance and Midpoint Formulas

- 5. Find the lengths of the sides of the triangle in the figure.
- 6. Show that the triangle is a right triangle.
- 7. Prove that the midpoint of the hypotenuse is equidistant from the three vertices.

P.3 LINEAR EQUATIONS & INEQUALITIES

Objectives: Solve linear equations and inequalities in one variable.

- Solving Equations
 - > <u>Equation</u> -
 - We can use the properties of equality reflexive, symmetric, transitive, addition & multiplication - to solve equations algebraically.
- **d** Linear Equations in One Variable
 - \blacktriangleright A linear equation in x is
 - Has exactly one solution
 - We solve such an equation by transforming it into an ______
 - Two or more equations are ______ if they have the same solutions.

Examples: Solving Linear Equations Solve the equation.

1.
$$2(3-4x) - 5(2x+3) = x - 17$$

2.
$$\frac{a+5}{8} - \frac{a-2}{2} = \frac{1}{3}$$

How Do you RID AN EQUATION
OF FRACTIONS?

d Linear Inequalities in One Variable

 \blacktriangleright A linear inequality in x is one that can be written in the form:

ax + b < 0, $ax + b \le 0$, ax + b > 0, $ax + b \ge 0$

- A solution of an inequality in x is a value of x for which the inequality is true \rightarrow solution set

- Double Inequalities
 - Combination of two inequalities
 - Solution: a double inequality with x isolated as the middle term

Examples: Solving Linear Inequalities

Solve the inequality. Express your solution as an inequality and in interval notation. Graph the solution set.

P.4 LINES IN THE PLANE

<u>Objectives</u>: Use the concepts of slope & *y*-intercept to graph and write linear equations in two variables.

ð Slope of a Line

> The slope of a non-vertical line through the points (x_1, y_1) and (x_2, y_2) is:

If the line is vertical, its slope is _____.

ð Point-Slope Form Equation of a Line

If we know the coordinates of one point on a line & the slope of the line, then we can find the equation of the line.

- The point-slope form of an equation of a line that passes through the point (x_1, y_1) and has slope *m* is:
- Slope-Intercept Form of an Equation of a Line
 - The <u>y-intercept</u> of a non-vertical line is...
 - The slope-intercept form of an equation of a line with slope m and y-intercept (0, b) is:
- **d** General Form for an Equation of a Line
 - Every line has an equation that can be written in general form:
- Other Forms for the Equation of a Lines
 - ➢ Vertical lines:
 ➢ Horizontal lines:

Examples: Finding the Slope of and the Equation of a Line

- 1. Find the slope of the line that passes through (4, 6) and (-3, -2).
- 2. Find the general form equation of the line in #1.
- Graphing Linear Equations in Two Variables
 - A linear equation in x and y is one that can be written in the form Ax + By = C, where A and B are not both zero.
 - The graph of an equation in x and y consists of all pairs (x, y) that are solutions of the equation.
 - Use Intercepts
 - Since two points determine a line you can use the x- and y-intercepts.
 - <u>x-intercept</u> the point (x', 0) where the graph intersects the x-axis
 - ~ Set y = 0 and solve for x to find the x-intercept
 - <u>y-intercept</u> the point (0, y')
 - ~ Set x = 0 and solve for y to find the y-intercept

 \blacktriangleright Use the slope-intercept equation of a line: y = mx + b

Graphing with a Graphing Utility

To draw a graph of an equation using a grapher:

- **1.** Rewrite the equation in the form y = (an expression in x).
- **2.** Enter the equation into the grapher.
- **3.** Select an appropriate **viewing window** (see Figure P.26).
- 4. Press the "graph" key.
- Refer to "Basic Graphing" step one: <u>http://www.mathbits.com/MathBits/TISection/General/BasicGraphing.htm</u>
- Parallel & Perpendicular Lines
 - \blacktriangleright Parallel: slopes are equal \rightarrow
 - Perpendicular: slopes are the opposite reciprocals of each other:

Examples: Finding Equations of Parallel & Perpendicular Lines

3. Find an equation of a line through P(2, -1) that is <u>parallel</u> to line L with equation: 3x + 2y = 5

4. Find an equation of a line through P(2, -3) that is <u>perpendicular</u> to the line L with equation: 3x - y = 3

Examples: Applications with Linear Equations

5. A commercial jet airplane climbs at takeoff with slope $m = \frac{3}{8}$. How far in the horizontal direction will the airplane fly to reach an altitude of 12,000 feet above the takeoff point?

- 6. Camelot Apartments purchased a \$50,000 building and depreciates it \$2000 per year over a 25-year period.
 - a. Write a linear equation giving the value y of the building in terms of the years x after the purchase.
 - b. In how many years will the value of the building be \$24,500?
- 7. American's personal income in trillions of dollars is given in Figure P.30.

a.	Write a linear equation for Americans' income y in terms of the year x using the data given for 1998 and 1999.	Year	Amount (trillions of dollars)
		1998	7.4
		1999	7.8
		2000	8.4
		2001	8.7
		2002	8.9
		2003	9.2

b. Use the equation in (a) to estimate American's income in 2001. FIGURE P.30 Americans' Personal Income.

- c. Use the equation in (a) to estimate American's income in 2006.
- d. Superimpose a graph of the linear equation in (a) on a scatter plot of the data. What do you observe?

P.5 SOLVING EQUATIONS GRAPHICALLY, NUMERICALLY & ALGEBRAICALLY

<u>**Objectives:**</u> Solve equations involving quadratic, absolute value & rational functions by: finding α -intercepts or intersection points on graphs and by using algebraic or numerical techniques.

- Solving Equations Graphically
 - \succ Finding x-Intercepts
 - Recall that x-intercepts are where the graph crosses the x-axis and where y = 0

Examples: Solve by Finding x-Intercepts

1. $5x^2 + 19x + 12 = 0$

Finding *x*-intercepts $2x^2 - 3x - 2 = 0$ X=-.5 Y=0

2.
$$x(3x-7) = 6$$

d Quadratic Equations

 \blacktriangleright A <u>quadratic equation in χ </u> is...

Solving Quadratic Equations Algebraically

- ➤ Factoring
 - Factor and apply the <u>Zero Factor Property</u>
 - •

Extracting Square Roots

Use to solve quadratic equations of the form ______

<u>Square Root Principle:</u>______

Examples: Solving Quadratic Equations Algebraically

- **3.** Solve by factoring: $4x^2 8x + 3 = 0$
- 4. Solve by extracting square roots: $3(x + 4)^2 8 = 0$

- Solving Quadratic Equations Algebraically (continued)
 - > Completing the Square
 - To solve x² + bx = c, add ______ to both sides of the equation & ______
 the left side of the new equation.
 - Using the Quadratic Formula
 - The solutions of the quadratic equation $ax^2 + bx + c = 0$, where $a \neq 0$, are given by the <u>quadratic formula</u>:

Examples: Solving Quadratic Equations Algebraically

5. Solve $x^2 + 6x = 7$ by completing the square.

6. Solve $3x + 4 = x^2$ using the quadratic formula.

Approximating Solutions of Equations Numerically w/Tables

- If you need to see values relating to a function (inputted into y =), go to the TABLE (2nd GRAPH).
 - Here you can find the value of x if the equation is equal to 0, -2, 6, 16, 30...

Example: Solving Equations Numerically

- 7. Use a table to find the solutions of the equation: $x^2 x 1 = 0$ Approximate to two decimal places.
 - a. Press 2nd WINDOW
 - b. TblStart = 0
 - c. \triangle Tbl = 0.1
 - d. 2^{nd} GRAPH and scroll until you find a $Y_1 \approx 0$; what is x?
 - e. Return to (a); change (b) to x value and (c) to 0.01
 - f. Return to the table and find the first of two solutions
 - g. Repeat (a f) to find the second solution

- Solving Equations by Finding Intersections
 - We can rewrite an equation and solve it graphically by finding the ______

_____ of two graphs

• When solving an equation by finding intersections, the value of y is irrelevant.

Examples: Solving Equations Graphically

8. Solve $|0.5x + 3| = x^2 - 4$ graphically by finding intersections. Approximate answers to the nearest 100th.

P.6 COMPLEX NUMBERS

<u>Objectives</u>: Add, subtract, multiply & divide complex numbers; and find complex roots of quadratic equations.

- **d** Complex Numbers
 - Imaginary unit:
 - A complex number is...

FACT: All real numbers are also complex numbers.

- Why?
- > Two complex numbers are equal if the real & imaginary parts are equal.
 - For example: x + yi = 2 + 5i if and only if x = 2 & y = 5

Examples: Using Complex Numbers

- 1. Write the expression in the form bi, where b is a real number.
 - a. $\sqrt{-16}$ b. $\sqrt{-3}$
- 2. Find the real numbers x and y that make the equation true: (5-2i)-7 = x - (3 + yi)

- **d** Operations with Complex Numbers
 - > Addition/Subtraction:
 - > Multiplication:
 - Division
 - Multiply the numerator & denominator by the denominator's ______
 - The product of the complex numbers a + bi & a bi is a positive real number: $a^2 + b^2$

Examples: Performing Operations with Complex Numbers Write the sum, difference or product in standard form.

3.
$$(2-i) + (3-\sqrt{-3})$$

4. $(i^2+3) - (7+i^3)$

5. $-i(3+2i)^2$

Write the expression in standard form.

6.
$$\frac{5+i}{2-3i}$$

O Complex Solutions of Complex Equations

> The Discriminant: $b^2 - 4ac$

- If $b^2 4ac > 0 \rightarrow z$ distinct real solutions
- If $b^2 4ac = 0 \rightarrow$ one repeated real solution
- If $b^2 4ac < 0 \rightarrow \text{complex conjugate pair of solutions}$

Examples: Finding Complex Solutions of Quadratic Equations

7. Solve $x^2 + 2x + 5 = 0$

P.7 SOLVING INEQUALITIES ALGEBRAICALLY & GRAPHICALLY

<u>Objectives</u>: Solve inequalities involving absolute value, quadratic polynomials and expressions with fractions.

Solving Absolute Value Inequalities

Let *u* be an algebraic expression in *x* and let *a* be a real number with $a \ge 0$.

1. If |u| < a, then *u* is in the interval (-a, a). That is,

|u| < a if and only if -a < u < a.

2. If |u| > a, then *u* is in the interval $(-\infty, -a)$ or (a, ∞) , that is,

|u| > a if and only if u < -a or u > a.

The inequalities < and > can be replaced with \leq and \geq , respectively.

UNION OF TWO SETS

The **union of two sets** A and B, denoted by $A \cup B$, is the set of all objects that belong to A or B or both.

Examples: Solving Absolute Value Inequalities

Solve the inequality algebraically. Write the solution in interval notation.

1. $|x+4| \ge 5$ **2.** |4-3x| - 2 < 4

Solving Quadratic Inequalities

- \blacktriangleright First, set the corresponding quadratic equation equal to zero and solve
 - Then find the interval(s) for which it is greater than or less than zero OR
 - ... determine the values of x for which the graph lives above the x-axis (if greater than) or below the x-axis (if less than)

Examples: Solving Quadratic Inequalities

Solve the inequality algebraically. Write the solution in interval notation.

3. $2x^2 + 7x \ge 15$ **4.** $2x^2 + 17x + 21 < 0$

- Solving Inequalities Graphically
 - \blacktriangleright Set the corresponding equation equal to zero and the graph.
 - > Approximate the zeros.
 - Determine the intervals that satisfy the inequality.

[-3, 3] by [-2, 2]

Examples: Solving Inequalities Graphically

Solve the cubic inequality graphically. Write the solution in interval notation. Approximate your solutions to the nearest hundredth.

5.
$$3x^3 - 12x + 2 \ge 0$$

6. $|2x^2 + 7x - 15| < 10$

∂ Projectile Motion

Suppose an object is launched vertically from a point s_0 feet above the ground with an initial velocity of v_0 feet per second. The vertical position s (in feet) of the object t seconds after it is launched is...

Examples: Applications Involving Inequalities

- 7. A projectile is launched straight up from ground level with an initial velocity of 140 ft/sec.
 - a. How long is the projectile aloft?
 - b. When is the projectile's height above ground at least 165 feet?
 - c. When is it less than or equal to 165 feet?
- 8. Barb wants to drive to a city 105 mi from her home in no more than 2 hours. What is the lowest average speed she must maintain on the drive?
- 9. A stuntman will jump off a 20-meter building. A high-speed camera is ready to film him between 15 m and 10 m above the ground. When should the camera film him? Solve $d = 20 5t^2$.

Chapter P: Prerequisites