

Factor the x-box way Example: Factor 3x² -13x -10

 $3x^2 - 13x - 10 = (x - 5)(3x + 2)$

Factor the x-box way y = $ax^2 + bx + c$

Factor using the x-box method.

Examples

1. $x^2 + 4x - 12$

Solution: $x^2 + 4x - 12 = (x + 6)(x - 2)$

Solution: $x^2 - 9x + 20 = (x - 4)(x - 5)$

Think-Pair-Share

- Based on the problems we've done, list the steps in the diamond/box factoring method so that someone else can do a problem using only your steps.
- 2. Trade papers with your partner and use their steps to factor the following problem: $x^2 + 4x 32$.

Trying out the Steps

- 3. If you cannot complete the problem using only the steps written, put an arrow on the step where you stopped. Give your partner's paper back to him.
- 4. Modify the steps you wrote to correct any incomplete or incorrect steps. Finish the problem based on your new steps and give the steps back to your partner.
- 5. Try using the steps again to factor: $x^2 - 4x + 3$.

Stepping Up

- 6. Edit your steps and factor: $x^2 + 8x - 20$.
- 7. Formalize the steps as a class.

Solution: $2x^2 - 5x - 7 = (2x - 7)(x + 1)$

Solution: $15x^2 + 7x - 2 = (3x + 2)(5x - 1)$

Factor each completely.

1) $b^2 + 8b + 7$

3) $m^2 + m - 90$

5) $n^2 - 10n + 9$

4) $n^2 + 4n - 12$

6) $b^2 + 16b + 64$

