|  | Example: $4 x^{2}+10 x y-84 y^{2}$ |
| :--- | :---: |
| ALWAYS LOOK FOR A COMMON FACTOR! | $\left.2\left(2 x^{2}\right)+5 x y-42 y^{2}\right)$ |
| DEFOIL - Factoring Trinomials <br> 1. Multiply the first \& last terms | $2 x^{2} \times\left(-42 y^{2}\right)=-84 x^{2} y^{2}$ |
| 2. Find the factors - that give you the answer <br> in step one - that combine to be the middle <br> term. | $-84 x^{2} y^{2}$ <br> $12 x y$ <br> $-7 x y$ |
| 3. Replace the middle term with these factors. |  |$\quad$| $2\left(2 x^{2}+12 x y-7 x y-42 y^{2}\right)$ |
| :---: |

## Special Products:

- Difference of Two Squares: $a^{2}-b^{2}=(a+b)(a-b)$
- Both terms are perfect squares
- Must be subtraction
- Sum/Difference of Two Cubes
- $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
- $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
- Perfect Square Trinomials: $a x^{2} \pm b x+c=(m x \pm n)^{2}$
- Both $a x^{2} \& c$ are positive perfect squares
- The product of the square roots of $a x^{2} \& c$ times 2 is the middle term

$$
\sqrt{a x^{2}}=m x \& \sqrt{c}=n
$$

