	Example: $4x^2 + 10xy - 84y^2$
ALWAYS LOOK FOR A COMMON FACTOR!	$2(2x^2) + 5xy - 42y^2$
DEFOIL – Factoring Trinomials 1. Multiply the first & last terms	$2x^2 \times (-42y^2) = -84x^2y^2$
2. Find the factors – that give you the answer in step one – that combine to be the middle term.	$ \begin{array}{c c} -84x^2y^2 \\ \hline 12xy \\ -7xy \end{array} $ $ 5xy$
3. Replace the middle term with these factors.	$2(2x^2 + 12xy - 7xy - 42y^2)$
4. Factor by grouping: group the first two terms & group the last two terms & take out a common factor from each.	$2(2x^{2} + 12xy - 7xy - 42y^{2})$ $2[(2x^{2} + 12xy)(-7xy - 42y^{2})]$ $2[2x(x + 6y) - 7y(x + 6y)]$
5. What remains are your factors.	2(x+6y)(2x-7y)

Special Products:

- <u>Difference of Two Squares</u>: $a^2 b^2 = (a + b)(a b)$
 - o Both terms are perfect squares
 - Must be subtraction
- Sum/Difference of Two Cubes

o
$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

o
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

- Perfect Square Trinomials: $ax^2 \pm bx + c = (mx \pm n)^2$
 - o Both $ax^2 \& c$ are <u>positive</u> perfect squares
 - The product of the square roots of $ax^2 \& c$ times 2 is the middle term

$$\sqrt{ax^2} = mx \& \sqrt{c} = n$$