\qquad

2.2 - ANGLE PAIR RELATIONSHIPS

OBJECTIVES:

- Identify different types of angle relationships formed by intersecting lines and perpendicular lines
- Apply angle pair relationships to find measures of complementary angles, supplementary angles, linear pairs, and vertical angles

* Adjacent Angles

> Two angles with a common side, a common vertex, and no common interior points.

* Perpendicular
$>$ Lines, rays, or segments that intersect at right angles are perpendicular (\perp).
- Given: $\overline{D E} \perp \overline{E F}$
- Conclusion: $\angle D E F$ is a right angle

* Complementary Angles
$>$ Two or more angles whose sum is 90° (or a right angle)
- Each angle is called the complement of the other.

$\angle \mathrm{RGH} \& \angle \mathrm{HGT}$ ARE COMPLEMENTARY

$\angle A \& \angle B$ ARE COMPLEMENTARY
* Supplementary Angles
$>$ Two or more angles whose sum is 180° (or a straight angle)
- Each angle is called the supplement of the other.

> The Alge-Geometric Connection
- $x=$ the measure of the angle
- $90-x=$ the measure of the complement
- $180-x=$ the measure of the supplement of the angle

EXAMPLES:

1. Find the measure of the complement and supplement of a 43° angle.
2. Given: $\overrightarrow{B A} \perp \overrightarrow{B C}, m \angle 2$ is three greater than twice $m \angle 1$. Find the measure of each angle.

3. The measure of the supplement of an angle is 60 less than 3 times the measure of the complement of the angle. Find the measure of the complement.

* Linear Pairs

$>$ A pair of adjacent angles whose non-common sides are on the same line.

- We are allowed to assume linear pairs from the diagram.
> Linear Pair Postulate \sim If two angles form a linear pair, then they are supplementary.

- $\angle 1 \& \angle 2$ form a linear pair
- $m \angle 1+m \angle 2=180^{\circ}$

EXAMPLE:

4. Set up and solve a quadratic equation to find the value of x. Then find $m \angle L I R$ and $m \angle R I N$.

* Vertical Angles

> Whenever two lines intersect, two pairs of vertical angles are formed.

- We are allowed to assume vertical angles from the diagram.
$>$ Their sides form two pairs of opposite rays
- Opposite rays-two collinear rays that have a common endpoint \& extend in different directions
> Vertical angles are congruent.
- $\angle 1 \& \angle 3$ and $\angle 2 \& \angle 4$ are vertical angles
- $\angle 1 \cong \angle 3$ and $\angle 2 \cong \angle 4$

EXAMPLES: Use vertical angle or linear pair relationships to set up and solve an equation to find the value of x.
5.

6.

2.4 - BEQiNNENG PROOFS

OBJECTIVES:

- Structure statements and reasons to form a logical argument
- Interpret geometric diagrams
- Assumptions from Diagrams
$>$ YOU SHOULD ASSUME: YOU SHOULD NEVER ASSUME:
- Straight lines \& angles
- Right angles
- Linear Pairs
- Congruent segments
- Collinearity \& betweeness of points
- Congruent angles
- Vertical angles
- Relatives sizes of segments \& angles

Example:

1. Which of the following can we assume from the diagram? Select ALL that apply.
a. $\angle N W R \& \angle V W T$ are vertical angles
b. $\angle V$ is a right angle
c. R is between P and S
d. $\angle P \cong \angle T$
e. $\angle R W V$ is a straight angle

f. $\angle P R V \& \angle S R W$ form a linear pair
g. $\overline{N P} \cong \overline{V T}$ INDICATE CONGRUENT ANGLES.

Example:

2. Write a congruence statement for all pairs of congruent segments and angles in each diagram.

* Writing Two-Column Proofs
$>$ Proof - A convincing argument that shows why a statement is true
- The proof begins with the given information \& ends with the statement you are trying to prove.
- Two-Column Proof:

Statements	Reasons
\bullet Specific - applies only to this proof	\bullet General - can apply to any proof

* Procedure for Drawing Conclusions

1. Memorize theorems, definitions, \& postulates.
2. Look for key words \& symbols in the given information.
3. Think of all the theorems, definitions, \& postulates that involve those keys.
4. Decide which theorem, definition, or postulate allows you to draw a conclusion.
5. Draw a conclusion, \& give a reason to justify the conclusion. Be certain that you have not used the reverse of the correct reason.

- The "If..." part of the reason matches the given information, and the "then..." part matches the conclusion being justified.

TODAY WE WILL LEARN HOW TO USE THE FOLLOWING REASONS IN PROOFS:

Definition of congruent angles Angles w/the same measure are congruent.	definition of right angle An angle with a measure of 90° is a right angle.
Assumed from diagram. Straight angles, linear pairs, vertical angles	Right angles are congruent.
Straight angles are congruent.	Angle Addition Postulate

Chapter 2: Reasoning and Proof

* Substitution Property
$>$ Think of it as "replacement."
Example \#3
Given: $m \angle 1+m \angle 2=90^{\circ}$, $\angle 1 \cong \angle 3$
Prove: $m \angle 3+m \angle 2=90^{\circ}$

Statements	Reasons

Theorem-A mathematical statement that can be proved.
IF TWO ANGLES ARE RIGHT ANGLES, THEN THEY ARE CONGRUENT.

Given: $\angle \mathrm{A}$ is a right \angle. $\angle \mathrm{B}$ is a right \angle.
Prove: $\angle A \cong \angle B$

Proof:
Statements Reasons
$1 \angle \mathrm{~A}$ is a right angle.
$2 \mathrm{~m} \angle \mathrm{~A}=90$
$3 \angle \mathrm{~B}$ is a right angle.
$4 \mathrm{~m} \angle \mathrm{~B}=90$
$5 \angle A \cong \angle B$
Reasons
1 Given measure is 90 .
3 Given
4 Same as 2

2 If an angle is a right angle, then its

5 If two angles have the same measure, then they are congruent.
Steps 2 \& 4 can be omitted in future proofs.

IF TWO ANGLES ARE STRAIGHT ANGLES, THEN THEY ARE CONGRUENT.

Given: $\angle \mathrm{ABC}$ is a straight angle. \quad Proof:
Prove: $\angle \mathrm{ABC} \cong \angle \mathrm{DEF}$

Statements Reasons
$1 \angle A B C$ is a straight angle.
$2 \mathrm{~m} \angle \mathrm{ABC}=180$
$3 \angle D E F$ is a straight angle.
$4 \mathrm{~m} \angle \mathrm{DEF}=180$
$5 \angle \mathrm{ABC} \cong \angle \mathrm{DEF}$

Reasons
1 Given
2 If an angle is a straight angle, then its measure is 180.
3 Given
4 Same as 2
5 If two angles have the same measure, then they are congruent.

Steps 2 \& 4 can be omitted in future proofs.
NOW THAT WE HAIVE "PROVEN" THESE THEOREMS, WE CAN LSE THEM IN PROOFS!

Example \#4

Given: Diagram as shown
Prove: $\quad \angle E F G \cong \angle H F J$
Statements

Example \#5
Given: $m \angle 1=50^{\circ}$ $m \angle 2=40^{\circ}$
$\angle X$ is a right angle
Prove: $\quad \angle A B C \cong \angle X$

2.5 -B:BECTORS, PERPENO:CULARITTY, \& VERTICAL ANGLLS

OBJECTIVES:

- Prove conjectures involving midpoints, bisectors, perpendicularity, and vertical angles
- Structure statements and reasons to form a logical argument

TODAY WE WILL LEARN HOW TO USE THE FOLLOWING REASONS IN PROOFS:

Vertical angles are congruent.	TRANSITIVE PROPERTY If angles (or segments) are congruent to the same (or congruent) angle (or segment), then they are congruent to each other.
Definition of bisects (or trisects)	Definition of perpendicular (\perp)
If a ray bisects an angle, then it divides the angle congruent angles.	
If two lines are perpendicular, then they intersect	
and form right angles.	
If a point is a midpoint of a segment, then it	
divides the segment into two congruent segments.	

* Midpoints \& Bisectors of Segments
$>$ A point (or segment, ray, or line) that divides a segment into two congruent segments bisects the segment.
- The bisection point is called the midpoint of the segment.
- Only segments have midpoints.

| Statements | Reasons |
| :--- | :--- | :--- |
| $1 . M$ is the midpoint of $\overline{A B}$ | 1. Given |
| 2. | 2. Definition of midpoint |

* Trisection Points \& Trisecting a Segment
$>$ Two points (or segments, rays, or lines) that divide a segment into three congruent segments trisect the segment.
- The two points at which the segment is divided are called the trisection points of the segment.
- Only segments have trisection points.

Statements	Reasons
$1 . R$ and S are trisection points of $\overline{A C}$	1. Given
2.	2. Definition of trisects

- Angle Bisectors

$>$ A ray that divides an angle into two congruent angles bisects the angle.

- The dividing ray is called the bisector of the angle.

| Statements | Reasons |
| :---: | :---: | :--- |
| 1. $\overrightarrow{A W}$ bisects $\angle T A O$ | 1. Given |
| 2. | 2. Definition of bisects |

* Angle Trisectors

> Two rays that divide an angle into three congruent angles trisect the angle.

- The two dividing rays are called the trisectors of the angle.

Statements	Reasons
1. $\overrightarrow{B H}$ and $\overrightarrow{B R}$ trisect $\angle T B E$	1. Given
2.	2. Definition of trisects

\author{

* Perpendicular Lines, Rays, \& Segments
}
$>$ Perpendicularity, right angles, \& 90° measurements all go together.
$>$ Lines, rays, or segments that intersect at right angles are perpendicular (\perp).
- A pair of perpendicular lines forms four right angles.
$>$ Do not assume perpendicularity from a diagram!

Statements	R
$1 . \overrightarrow{G R} \perp \overrightarrow{G T}$	
2.	

Reasons

1. Given
2. Definition of perpendicular

Reasons

* Transitive Properties of Congruence
$>$ If angles (or segments) are congruent to the same angle (or segment), they are congruent to each other.
> If angles (or segments) are congruent to congruent angles (or segments), they are congruent to each other.

Examples ~

2. Given: $\overrightarrow{K M}$ bisects $\angle J K N$ $\overrightarrow{K N}$ bisects $\angle M K L$

Prove: $\angle 1 \cong \angle 3$

Statements	Reasons

* Vertical Angles

> Whenever two lines intersect, two pairs of vertical angles are formed.

- We are allowed to assume vertical angles from the diagram.
$>$ Vertical Angles Theorem: Vertical angles are congruent.
- $\quad \angle 1 \& \angle 3$ and $\angle 2 \& \angle 4$ are vertical angles
- $\angle 1 \cong \angle 3$ and $\angle 2 \cong \angle 4$

Examples ~

3. Given: $\angle 4 \cong \angle 6$

Prove: $\angle 5 \cong \angle 6$

Statements

Reasons

2.6 - COMPLEMENTARY \& SUPPLEMENTIARY ANGLES

OBJECTIVES:

- Prove conjectures involving complementary and supplementary angles
- Structure statements and reasons to form a logical argument

TODAY WE WILL LEARN HOW TO USE THE FOLLOWING REASONS IN PROOFS:

$\left.$| If two angles form a linear pair, then they are |
| :--- | :--- | :--- |
| supplementary. |\quad| Definition of complementary angles |
| :---: |
| If the sum of two angles is a right angle, then they |
| are complementary. | \right\rvert\,

* Complementary angles-two angles whose sum is 90° (a right angle)
$>$ Each of the two angles is called the complement of the other.

NO NEED FOR ANGLES TO BE ADJACENT TO BE COMPLEMENTARY.

Example ~

1. Given: $\angle T V K$ is a right \angle.

Prove: $\angle 1$ is complementary to $\angle 2$.

Pattern for proving complementary angles - it follows from the definition of complementary angles:
(1) Right angle; (2) Angle Addition Postulate; (3) Complementary

* Supplementary angles-two angles whose sum is 180° (a straight angle)
$>$ Each of the two angles is called the supplement of the other.

- Linear Pair Postulate \sim If two angles form a linear pair, then they are supplementary.

Example ~
2. Given: Diagram as shown

Prove: $\angle 1$ is supplementary to $\angle 2$.

* Congruent Complements \& Supplements
$>$ In the diagram below, $\angle 1$ is supplementary to $\angle A$, and $\angle 2$ is also supplementary to $\angle A$.

- How large is $\angle 1$? How large is $\angle 2$? How does $\angle 1$ compare with $\angle 2$?

CONCRUENT SUPPLEMENTS THEOREM

IF ANGLES ARE SUPPLEMENTARY TO THE SAME ANGLE, THEN THEY ARE CONGRUENT.

Given: $\angle 3$ is supp. to $\angle 4$.
$\angle 5$ is supp. to $\angle 4$.
Prove: $\angle 3 \cong \angle 5$

IF ANGLES ARE SUPPLEMENTARY TO CONGRUENT ANGLES, THEN THEY ARE CONGRUENT.

Given: $\angle \mathrm{F}$ is supp. to $\angle \mathrm{G}$. $\angle \mathrm{H}$ is supp. to $\angle \mathrm{J}$. $\angle \mathrm{G} \cong \angle \mathrm{J}$
Conclusion: $\angle \mathrm{F} \cong \angle \mathrm{H}$

Chapter 2: Reasoning and Proof

- If angles are complementary to the same angle, then they are congruent.
- If angles are complementary to congruent angles, then they are congruent.

Given: $\angle 4$ is comp. to $\angle 6$. $\angle 5$ is comp. to $\angle 6$.
Prove: $\angle 4 \cong \angle 5$

Example ~
3. Given: $\angle O$ is comp. to $\angle 2$
$\angle J$ is comp. to $\angle 1$
Prove: $\angle O \cong \angle J$

Statements
Reasons

4. Proof of the Vertical Angles Theorem

Given: Diagram as shown
Prove: $\angle 3 \cong \angle 4$
Do not use vertical angles.

2.7- PROPERTIES OF SEGMENTS \& ANGLES

OBJECTIVES:

- Prove conjectures involving the addition and subtraction of segments and angles
- Structure statements and reasons to form a logical argument

INVESTIGATION:

If $\overline{A B} \cong \overline{C D}$, does $\overline{A C} \cong \overline{B D}$? EXPLAIN YOUR REASONING.

Is $\angle E F H \cong \angle J F G$?
EXPLAIN YOUR REASONING.

Is $\overline{K M} \cong \overline{P O}$?
EXPLAIN YOUR REASONING.

Is $\angle T W X \cong \angle T X W$?
EXPLAIN YOUR REASONING.

If $\overline{A C} \cong \overline{B D}$, does $\overline{A B} \cong \overline{C D}$?
EXPLAIN YOUR REASONING.

If $\angle S T E \cong \angle W E T \& \angle S T W \cong \angle W E S . .$.
Is $\angle S E T \cong \angle W T E$?
EXPLAIN YOUR REASONING.

TODAY WE WILL LEARN HOW TO USE THE FOLLOWING REASONS IN PROOFS:
 SEGMENT ADDITION PROPERTY

$>$ If a segment is added to two congruent segments, the sums are congruent.
$>$ If congruent segments are added to congruent segments, the sums are congruent.

* ANELE ADDITION PROPERTY

> If an angle is added to two congruent angles, the sums are congruent.
$>$ If congruent angles are added to congruent angles, the sums are congruent.

* SEGMENT SUBTRACTION PROPERTY

$>$ If a segment is subtracted from two congruent segments, the differences are congruent.
$>$ If congruent segments are subtracted from congruent segments, the differences are congruent.

* ANGLE SUBTRICTION PROPERTY

$>$ If an angle is subtracted from two congruent angles, the differences are congruent.
$>$ If congruent angles are subtracted from congruent angles, the differences are congruent.
Go back to the Investigation and identify which property is represented in each problem.

REFLEXIVE PROPERTY: Any segment or angle is congruent to itself.
$>$ Whenever a segment or an angle is shared by two figures, we can say that the segment or angle is congruent to itself.

examples:

1. Name the angles or segments that are congruent by the Addition Property.
a

b

2. Name the angles or segments that are congruent by the Subtraction Property.
a

b

3. Given: $\overline{G J} \cong \overline{H K}$

Prove: $\overline{G H} \cong \overline{J K}$

Statements

Reasons
4. What can you conclude from the given information? Which property would you use?

a. Given: $\angle T N R \cong \angle T R N \& \angle N R S \cong \angle R N S$
b. Given: $\overline{A B} \cong \overline{C D}$

