\qquad

Parallel \& Perpendicular Lines

31 - Lines in the Coordinate Plane

OBJECTIVES:

- Identify the slope and x - and y-intercepts of linear equations
- Graph and write linear equations
* Slope
$>$ The slope, m, of a line is the ratio of the vertical change (rise) to the horizontal change (run).

$$
\mathrm{m}=\frac{\text { rise }}{\text { run }}
$$

If you're given two points
$\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

EXAMPLE: $(-2,-1)$ and $(4,3)$
Look at $\frac{\text { rise }}{\text { run }}$ as
$\frac{\text { the change in the } y \text { 's }}{\text { the change in the } x \text { 's }}$
$=\frac{3-(-1)}{4-(-2)}=\frac{4}{6}=\frac{2}{3}$

* Horizontal \& Vertical Lines

Vertical Lines: $x=$ \#

EXAMPLES: Find the slope and equation for each line shown.
1.

2.

* Slope-Intercept Form
$>y=m x+b$
- The coefficient of x, which is m, is the slope of the line.
- The constant term, b, is the y-coordinate of the y-intercept.
* Graphing a Function in Slope-Intercept Form
$>$ Plot the y-intercept: $(0, b)$
$>$ From there, use the slope, m, to determine a second point
- If the slope is positive, go up the number of units in the numerator

If you're going to go off the grid, then do the complete opposite.

- If the slope is negative, go down the number of units in the numerator
- Always go right the number of units in the denominator
 (2) the slope is $\frac{-3}{5}$ so we

1 It crosses the y-axis at 4 , so we start there:

EXAMPLES: GRAPHING A FUNCTION IN SLOPE-INTERCEPT FORM
3. $y=-\frac{2}{5} x-2$

4. $y=\frac{9}{2} x+4$

Key Concept Forms of Linear Equations

Definition

The slope-intercept form of an equation of a nonvertical line is $y=m x+b$, where m is the slope and b is the y-intercept.

The point-slope form of an equation of a nonvertical line is $y-y_{1}=m\left(x-x_{1}\right)$, where m is the slope and $\left(x_{1}, y_{1}\right)$ is a point on the line.

Symbols

$$
\left.\begin{array}{ll}
y=m x+b \\
\uparrow & \uparrow \\
\text { slope } & y \text {-intercept } \\
y-y_{1} & =m\left(x-x_{1}\right) \\
\uparrow & \uparrow
\end{array} \quad \uparrow\right\}
$$

* Writing Linear Functions

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& m=-2 \quad \begin{array}{c}
(4,-3) \\
x_{1}
\end{array} \\
& y-(-3)=-2(x-4) \\
& \begin{array}{cc}
y+3=-2 x & +8 \leftarrow \text { be careful } \\
-3 & -3
\end{array} \\
& \text { You could substitute the point \& the slope into the slope- } \\
& \text { intercept equation of a line and then solve for } b \text { : } \\
& y=m x+b \\
& -3=-2(4)+b \\
& -3=-8+b \\
& 5=b \\
& \text { Then only plug in the slope \& } y \text {-intercept (} b \text {): } \\
& y=-2 x+5
\end{aligned}
$$

EXAMPLES: WRITING LINEAR FUNCTIONS

Write the slope-intercept form of the line described.
5. The line that passes through $(-1,4)$ with slope -3
6. The line that passes through the points $(3,-5) \&(-4,-1)$

* Standard Form

$>$ A linear function can be written in standard form as $A x+B y=C$ where A, B, and C are real numbers and A and B cannot both be zero.

* Graphing a Function in Standard Form
> Find and plot the vertical and horizontal intercepts of the function.

To find the x-intercept: Let $y=0$ \& solve for x .

$$
\begin{aligned}
x(0) & =4 \\
x & =4
\end{aligned}
$$

To find the y-intercept: Let $\mathrm{x}=0$ \& solve for y.
$\begin{aligned}(1)+2 y & =4 \\ y & =2\end{aligned}$
This is also \boldsymbol{b} in slope-intercept form.

EXAMPLES: GRAPHING A LINEAR FUNCTION IN STANDARD FORM

Find the vertical and horizontal intercepts of the function. Then graph the function.
7. $10 x+3 y=15$

8. $5 x-3 y=-6$

3.2 - Parallel \& Perpendicular Lines

OBJECTIVES:

- Prove the slope criteria for parallel and perpendicular lines and use them to sole geometric problems
- Write equations to describe lines parallel or perpendicular to a given lines

PARALLEL AND PERPENDICULAR LINES

Examine the graphs of lines ℓ, m, and n. Lines ℓ and m are parallel, and n is perpendicular to ℓ and m. Let's investigate the slopes of these lines.

$$
\begin{array}{ccc}
\text { slope of } \boldsymbol{\ell} & \text { slope of } m & \text { slope of } n \\
m=\frac{2-5}{2-(-3)} & m=\frac{1-4}{5-0} & m=\frac{2-(-3)}{4-1} \\
=-\frac{3}{5} & & =-\frac{3}{5}
\end{array}
$$

* Slopes of Parallel Lines
> If two nonvertical lines are parallel, then their slopes are \qquad .
$>$ Any two vertical or horizontal lines are parallel.
* Slopes of Perpendicular Lines
$>$ The slopes of perpendicular lines are \qquad .
$>$ Any horizontal line and vertical line are perpendicular.

EXAMPLES: DETERMINE LINEAR RELATIONSHIPS

1. Determine whether $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ are parallel, perpendicular, or neither: $A(-8,-7), B(4,-4), C(-2,-5), D(1,7)$

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

EXAMPLES: DETERMINE LINEAR RELATIONSHIPS

Find the slope of each line, then determine if the lines are parallel, perpendicular, or neither.
2. $2 x+3 y=6$
$6 x-4 y=24$
3. $2 x+5 y=-1$
$10 y=-4 x-20$

EXAMPLES: WRITE LINEAR FUNCTIONS

Write the slope-intercept form of the line described.

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

4. The line that passes through $(-8,6)$ and is parallel to the line $4 x+y=-5$
5. The line that passes through $(-3,-4)$ and is perpendicular to the line $y=2 x-3$

3.3 - Angles Formed by Parallel Lines

OBJECTIVES:

- Identify the pairs of angles formed by a transversal cutting parallel lines
- Use postulates and theorems involving parallel lines to find angle measures
* Relationships Between Lines \& Planes
> Coplanar lines that do not intersect are called parallel lines.
- $\overleftrightarrow{P Q} \| \overleftrightarrow{R S}$
- Arrows are used in diagram to identify parallel lines.
* Constructing Parallel Lines

> Constructing a line parallel to a given line that passes through a given point
- Construction Link
- R

* Angles Formed When Parallel Lines Are Cut by a Transversal

Corresponding Angles One is on the inside; the other is on the outside; both are on the same side and they are not adjacent.

* Angle Pairs Formed by Transversals
> Identify from the diagram (above)

Corresponding Angles	Alternate Exterior Angles	Alternate Interior Angles	SAME-Side Interior Angles	SAME-Side Exterior Angles

EXAMPLE 1: FINDING ANGLE MEASURES

Above, you constructed CORRESPONDING ANGLES which you know to be congruent since you copied $\angle R P Q$. In the diagram (at right), the corresponding angles would be represented by the given 55° angle and $\angle 7$.
Use your knowledge of vertical angles and linear pairs, to find the remaining angle measurements.

* Relationships Between Parallel Lines \& Angles
> If two parallel lines are cut by a transversal, then any pair of the angles formed are either congruent or supplementary.

CONGRUENT ANGLE PAIRS	SUPPLEMENTARY ANGLE PAIRS

EXAMPLES: FINDING ANGLE MEASURES

2. Find $m \angle G H I$.

3. Given: $\ell \| m$

Find x (that makes sense).

3. Given: $m \| n$

Find x.

5. Given: $\ell \| m, m \angle 2=3 x+17 \& m \angle 3=5 x-21$ Find $m \angle 1$.

Find the value of the variable(s) in each figure.
6.

7.

3.4 • Proofs with Parallel Lines

OBJECTIVES:

- Use postulates and theorems involving parallel lines to find angle measures
- Prove conjectures involving parallel lines
- Structure statements and reasons to form a logical argument

* Postulates \& Theorems involving Parallel Lines

> If two parallel lines are cut by a transversal, then any pair of the angles formed are either congruent or supplementary.

ALTERNATE EXTERIOR ANGLES

Congruent: $\angle 1 \cong \angle 8$

ALTERNATE INTERIOR ANGLES

Congruent: $\angle 1 \cong \angle 2$

CORRESPONDING ANGLES

Congruent: $\angle 1 \cong \angle 5$

SAME-SIDE INTERIOR ANGLES

Supplementary: $m \angle 3+m \angle 5=180^{\circ}$

SAME-SIDE EXTERIOR ANGLES

Suppiementary: $m \angle 1+m \angle 7=180^{\circ}$

EXAMPLES: FIND ANGLE MEASURES

1. There are two sets of parallel lines. Each parallel line also acts as a transversal. Find the measure of $\angle 1$. Justify your answer.

2. In the diagram below, $\overleftrightarrow{A B} \| \overleftrightarrow{C D}$. If $m \angle E F G=32^{\circ}$ and $m \angle A E G=137^{\circ}$, what is $m \angle E G F$?

PROVE THE ALTERNATE INTERIOR ANGLES THEOREM:
If two parallel lines are cut by a transversal, each pair of alternate interior angles are congruent.
Given: $p \| q$
Prove: $\angle 1 \cong \angle 2$

Reasons

3. Given: $a\|b \& c\| d$

Prove: $\angle 1$ is supp. to $\angle 4$

Statements	Reasons

3.5 - Proving Lines Parallel

OBJECTIVES:

- Use postulates and theorems to prove that two lines are parallel
- Structure statements and reasons to form a logical argument
* Parallel Line Converse Theorems
> Converse of the Corresponding Angles Postulate
- If two lines and a transversal form corresponding angles that are congruent, then the two lines are parallel.
> Converse of the Alternate interior Angles Theorem
- If two lines and a transversal form alternate interior angles that are congruent, then the two lines are parallel.
> Converse of the Alternate Exterior Andes Theorem
- If two lines and a transversal form alternate exterior angles that are congruent, then the two lines are parallel.
> Converse of the same-Side interior Andes Theorem
- If two lines and a transversal form same-side interior angles that are supplementary, then the two lines are parallel.
> Converse of the same-side Exterior Angles Theorem
- If two lines and a transversal form same-side exterior angles that are supplementary, then the two lines are parallel.

EXAMPLES: RECOGNIZE PARALLEL LINES

Can you prove that lines p and q are parallel? If so, identify the theorem or postulate used.
1.

2.

3.

4.

5.

6.

7. The diagram shows quadrilateral $A B C D$ with diagonal $\overline{B D}$. Is $\overline{A B} \| \overline{D C}$? Show all work and explain your reasoning.

8. PROVE THE CONVERSE OF THE SAME-SIDE INTERIOR ANGLES THEOREM:

If two lines and a transversal form same-side interior angles that are supplementary, then the two lines are parallel.
Given: $\angle 4$ is supp. to $\angle 5$
Prove: $g \| h$

\square
9. Given: $a \| b$

$$
\angle 1 \cong \angle 2
$$

Prove: $m \| p$

Statements

10. Given that the sum of the measures of the angles in a triangle is 180°, solve for x.
11. Find the measure of each angle in $\triangle A B C$.

$$
m \angle B A C=
$$

$$
m \angle B=
$$

$$
m \angle C=
$$

12. Explain why $\ell \| m$.
