Chapter 3 Notes Packet

Parallel & Perpendicular Lines

3.1 · Lines in the Coordinate Plane

OBJECTIVES:

- Identify the slope and *x* and *y*-intercepts of linear equations
- Graph and write linear equations
- Slope
 - > The slope, *m*, of a line is the ratio of the vertical change (rise) to the horizontal change (run).

Horizontal & Vertical Lines

EXAMPLES: Find the slope and equation for each line shown.

If you're going

to go off the

grid, then do the complete opposite.

- Slope-Intercept Form
 - \succ y = mx + b
 - The coefficient of *x*, which is *m*, is the <u>slope</u> of the line.
 - The constant term, *b*, is the <u>*y*-coordinate of the <u>*y*-intercept</u>.</u>
- ✤ Graphing a Function in Slope-Intercept Form
 - > Plot the *y*-intercept: (0, b)
 - \succ From there, use the slope, *m*, to determine a second point
 - If the slope is positive, go up the number of units in the numerator
 - If the slope is negative, go down the number of units in the numerator
 - Always go right the number of units in the denominator

Key Concept Forms of Linear Equations

Definition

ke note

The **slope-intercept form** of an equation of a nonvertical line is y = mx + b, where *m* is the slope and *b* is the *y*-intercept.

The **point-slope form** of an equation of a nonvertical line is $y - y_1 = m(x - x_1)$, where *m* is the slope and (x_1, y_1) is a point on the line.

Symbols

y = mx + b $\uparrow \quad \uparrow$ slope *y*-intercept $y - y_1 = m(x - x_1)$ $\uparrow \quad \uparrow \quad \uparrow$ *y*-coordinate slope *x*-coordinate

Writing Linear Functions

$$\begin{array}{r} y - y_{1} = m(x - x_{1}) \\ m = -2 \qquad (4, -3) \\ x_{1} \qquad y_{1} \\ y - (-3) = -2(x - 4) \\ y + 3 = -2x + 8 \leftarrow \text{be careful} \\ \frac{-3 \qquad -3}{y = -2x + 5} \text{ done} \end{array}$$

You could substitute the point & the slope into the slope-intercept equation of a line and then solve for b:

$$y = mx + b$$

$$-3 = -2(4) + b$$

$$-3 = -8 + b$$

$$5 = b$$

Then only plug in the slope & y-intercept (b):

$$y = -2x + 5$$

EXAMPLES: WRITING LINEAR FUNCTIONS Write the slope-intercept form of the line described.

5. The line that passes through (-1, 4) with slope -3

6. The line that passes through the points (3, -5) & (-4, -1)

- Standard Form
 - A linear function can be written in standard form as Ax + By = C where *A*, *B*, and *C* are real numbers and *A* and *B* cannot both be zero.
- ✤ Graphing a Function in Standard Form
 - > Find and plot the vertical and horizontal intercepts of the function.

Graph
$$x + 2y = 4$$

 x
 $y = 0$
 $x = 4$
 $x = 4$
To find the y-intercept: Let $x = 0$ & solve for y.
To find the y-intercept: Let $x = 0$ & solve for y.
 $y = 2$
This is also b in slope-intercept form.
 $y = 2$
This is also b in slope-intercept form.

EXAMPLES: GRAPHING A LINEAR FUNCTION IN STANDARD FORM

Find the vertical and horizontal intercepts of the function. Then graph the function.

7.
$$10x + 3y = 15$$

3.2 · Parallel & Perpendicular Lines

OBJECTIVES:

- Prove the slope criteria for parallel and perpendicular lines and use them to sole geometric problems
- Write equations to describe lines parallel or perpendicular to a given lines

PARALLEL AND PERPENDICULAR LINES

Examine the graphs of lines ℓ , m, and n. Lines ℓ and m are parallel, and n is perpendicular to ℓ and m. Let's investigate the slopes of these lines.

slope of ℓ	slope of <i>m</i>	slope of <i>n</i>
$m = \frac{2-5}{2-(-3)}$	$m = \frac{1-4}{5-0}$	$m = \frac{2 - (-3)}{4 - 1}$
$=-\frac{3}{5}$	$=-\frac{3}{5}$	$=\frac{5}{3}$

- ✤ Slopes of Parallel Lines
 - If two nonvertical lines are parallel, then their slopes are _____
 - > Any two vertical or horizontal lines are parallel.
- Slopes of Perpendicular Lines
 - > The slopes of perpendicular lines are _____
 - > Any horizontal line and vertical line are perpendicular.

EXAMPLES: DETERMINE LINEAR RELATIONSHIPS

1. Determine whether \overrightarrow{AB} and \overrightarrow{CD} are parallel, perpendicular, or neither: A(-8, -7), B(4, -4), C(-2, -5), D(1, 7)

EXAMPLES: DETERMINE LINEAR RELATIONSHIPS

Find the slope of each line, then determine if the lines are parallel, perpendicular, or neither.

- 2. 2x + 3y = 6
 - 6x 4y = 24

3. 2x + 5y = -110y = -4x - 20

 $\gamma = m x + b_{\gamma}$ slope y-

y-intercept

EXAMPLES: WRITE LINEAR FUNCTIONS

Write the slope-intercept form of the line described.

4. The line that passes through (-8, 6) and is parallel to the line 4x + y = -5

5. The line that passes through (-3, -4) and is perpendicular to the line y = 2x - 3

$$\mathbf{Y} - \mathbf{Y}_1 = \mathbf{m} (\mathbf{X} - \mathbf{X}_1)$$

3.3 · Angles Formed by Parallel Lines

OBJECTIVES:

- Identify the pairs of angles formed by a transversal cutting parallel lines
- Use postulates and theorems involving parallel lines to find angle measures
- Relationships Between Lines & Planes
 - > Coplanar lines that do not intersect are called parallel lines.
 - $\overrightarrow{PQ} \parallel \overrightarrow{RS}$
 - Arrows are used in diagram to identify parallel lines.
- ✤ Constructing Parallel Lines
 - Constructing a line parallel to a given line that passes through a given point
 - <u>Construction Link</u>

Angles Formed When Parallel Lines Are Cut by a Transversal

✤ Angle Pairs Formed by Transversals

> Identify from the diagram (above)

Corresponding	Alternate	Alternate	Same-Side	Same-Side
Angles	Exterior Angles	Interior Angles	Interior Angles	Exterior Angles

EXAMPLE 1: FINDING ANGLE MEASURES

Above, you constructed **CORRESPONDING ANGLES** which you know to be congruent since you copied $\angle RPQ$. In the diagram (at right), the corresponding angles would be represented by the given 55° angle and $\angle 7$.

Use your knowledge of vertical angles and linear pairs, to find the remaining angle measurements.

- Relationships Between Parallel Lines & Angles
 - > If two parallel lines are cut by a transversal, then any pair of the angles formed are either congruent or supplementary.

CONGRUENT ANGLE PAIRS SUPPLEMENTARY ANGLE PAIRS	SUPPLEMENTARY ANGLE PAIRS	

EXAMPLES: FINDING ANGLE MEASURES

2. Find $m \angle GHI$.

 Given: ℓ || m Find x (that makes sense).

5. Given: $\ell \parallel m$, $m \angle 2 = 3x + 17 \& m \angle 3 = 5x - 21$ Find $m \angle 1$.

Find the value of the variable(s) in each figure.

3.4 · Proofs with Parallel Lines

OBJECTIVES:

6.

- Use postulates and theorems involving parallel lines to find angle measures
- Prove conjectures involving parallel lines
- Structure statements and reasons to form a logical argument

Postulates & Theorems Involving Parallel Lines

> If two parallel lines are cut by a transversal, then any pair of the angles formed are either congruent or supplementary.

EXAMPLES: FIND ANGLE MEASURES

There are two sets of parallel lines. Each parallel line also acts as a transversal. Find the measure of ∠1. Justify your answer.

3.5 · Proving Lines Parallel

OBJECTIVES:

- Use postulates and theorems to prove that two lines are parallel
- Structure statements and reasons to form a logical argument
- Parallel Line Converse Theorems
 - > Converse of the Corresponding Angles Postulate
 - If two lines and a transversal form corresponding angles that are congruent, then the two lines are parallel.
 - > Converse of the Alternate Interior Angles Theorem
 - If two lines and a transversal form alternate interior angles that are congruent, then the two lines are parallel.
 - > Converse of the Alternate Exterior Angles Theorem
 - If two lines and a transversal form alternate exterior angles that are congruent, then the two lines are parallel.
 - > Converse of the same-side Interior Angles Theorem
 - If two lines and a transversal form same-side interior angles that are supplementary, then the two lines are parallel.
 - > Converse of the same-side Exterior Angles Theorem
 - If two lines and a transversal form same-side exterior angles that are supplementary, then the two lines are parallel.

EXAMPLES: RECOGNIZE PARALLEL LINES

Can you prove that lines p and q are parallel? If so, identify the theorem or postulate used.

В

А

7. The diagram shows quadrilateral *ABCD* with diagonal \overline{BD} . Is $\overline{AB} \parallel \overline{DC}$? Show all work and explain your reasoning.

10. Given that the sum of the measures of the angles in a triangle is 180° , solve for *x*.

11. Find the measure of each angle in $\triangle ABC$.

$m \angle BAC = $	$m \angle B = $	$m \angle C = $
-------------------	-----------------	-----------------

12. Explain why $\ell \parallel m$.