Chapter 4 Notes Packet

4.1 - RATIOS & PROPORTIONS

OBJECTIVES:

- WRITE RATIOS; SOLVE APPLICATIONS INVOLVING RATIOS
- USE THE CROSS PRODUCT PROPERTY TO SOLVE PROPORTIONS
- Ratios
 - > If a and b are two quantities that are measured in the same units, then the ratio of a to b is $\frac{a}{b}$
 - Ratios are usually expressed in simplest form.

EXAMPLE 1: The perimeter of a rectangle is 60 centimeters. The ratio of the width to the length is 3 : 2.

- a. Find the length and the width.
- b. Find the area of the rectangle.
- Proportions
 - > An equation that equates two ratios is a proportion.
 - Cross Product Property The product of the extremes equals the product of the means:

EXAMPLES: Use the Cross Product Property to solve each proportion. *If necessary, round to the nearest hundredth.*

If $\frac{a}{b} < \frac{c}{d}$ then ad = bc

If $\frac{x+5}{20} = \frac{3}{10}$ then $(x+5) \cdot 10 = 20$

2. $\frac{3x-8}{6} = \frac{2x}{10}$ 3. $\frac{x+3}{3} = \frac{8}{x-2}$

4.2 - DILATIONS

OBJECTIVES:

- DETERMINE THE SCALE FACTOR OF A DILATION
- GIVEN THE PRE-IMAGE, SCALE FACTOR, AND CENTER OF DILATION, GRAPH DILATIONS
- GIVEN THE VERTEX COORDINATES, SCALE FACTOR, AND CENTER OF DILATION, DETERMINE THE COORDINATES OF DILATED FIGURES
- PROVE THAT FIGURES ARE SIMILAR USING TRANSFORMATIONS
- Dilations
 - ▶ In the figure below $\triangle A'B'C'$ is the image of $\triangle ABC$ after a dilation with center *O* and scale factor $\underline{?}$.

• Use a ruler to find the following lengths in <u>millimeters</u>:

<i>OA</i> =	<i>OA</i> ' =
<i>OB</i> =	<i>OB</i> ' =
<i>OC</i> =	<i>OC</i> ' =
<i>AB</i> =	A'B' =
<i>BC</i> =	<i>B'C'</i> =
AC =	A'C' =

- What do you notice about the lengths of the corresponding sides of the two triangles?
- Use a protractor and find the measures of the corresponding angles.

<i>m∠A</i> =	$m \angle B = $	$m \angle C = $
<i>m∠A</i> ' =	$m \angle B' = $	<i>m∠C</i> ' =

- What do you notice about the measures of the corresponding angles?
- ➤ The scale factor, k, for a dilation is the ratio of a linear measurement of the image to a corresponding measurement of the preimage.
 - What is the scale factor of the dilation above?

- ✤ Similarity
 - ➢ In a dilation, the image and pre-image are SimilaR because they have the same shape − but are different sizes.
 - Corresponding side lengths are **PROPORTIONAL**
 - Similarity ratio The ratio of any side length in the first figure to the corresponding side length in the second figure.
 - Corresponding angles are **CONGRUENT**

EXAMPLE 1: Find the scale factor of the dilation and then set up and solve a proportion to find the value of the variable.

- ✤ Dilations in the Coordinate Plane with center (0,0)
 - > The graph below represents a dilation from center (0, 0) by scale factor k = 2.

- Compare the pre-image, AB, to the image A'B'. What effect does the dilation have on the coordinates of dilated points?
- Complete the conjecture: The image of (*a*, *b*) after a dilation with center at the origin and scale factor *k* has the coordinates ______.

• A dilation with k > 1 is an enlargement. A dilation with 0 < k < 1 is a reduction.

EXAMPLES -

2. Identify the dilation as an enlargement or a reduction and find its scale factor.

Apply the dilation to the polygon with the given vertices. Name the coordinates of the image points. Describe the dilation: center, scale factor, enlargement or reduction.

3. $D: (x, y) \to (2x, 2y)$ A(2, 1), B(2, 3), C(5, 1)

- Constructing Dilations Center NOT at the Origin
 - 1. Plot the center point on the coordinate plane.
 - 2. Determine the coordinates of one pre-image point.
 - a. What is the vertical distance from the center of dilation to the pre-image point?
 - b. What is the horizontal distance from the center of dilation to the pre-image point?
 - 3. Multiply the vertical and horizontal distances by the scale factor to determine the new vertical and horizontal distances.
 - a. Using these distances, plot your new point starting from the center of dilation.
 - 4. Repeat for all vertices.

EXAMPLES -

5. Dilate by a scale factor of 1/3 with center of dilation at (3, 0).

6. Dilate by a scale factor of $\frac{4}{3}$ with center of dilation at (0, -6).

In the following problems, one figure has been dilated to obtain the new figure. Determine the scale factor AND the center of dilation.

4.3 - SIMILARITY TRANSFORMATIONS

OBJECTIVES:

- EXPLORE THE BASIC CONCEPT OF SIMILARITY AS ILLUSTRATED THROUGH TRANSFORMATIONS
- PROVE THAT FIGURES ARE SIMILAR USING TRANSFORMATIONS
- Similarity
 - In a dilation, the image and pre-image are *similar* because they have the same shape but are different sizes.
 - Corresponding side lengths are **PROPORTIONAL**
 - Similarity ratio The ratio of any side length in the first figure to the corresponding side length in the second figure.
 - Corresponding angles are **CONGRUENT**
 - > The order of the vertices in a similarity statement is important. It identifies the corresponding angles and the corresponding sides.

similarity statement	congruent angles	corresponding sides
ABCD ~ EFGH	$\angle A \cong \angle E$ $\angle B \cong \angle F$ $\angle C \cong \angle G$ $\angle D \cong \angle H$	$\frac{AB}{EF} = \frac{BC}{FG} = \frac{CD}{GH} = \frac{DA}{HE}$

EXAMPLE: – Finding Unknown Lengths in Similar Polygons

2. Is ABCD ~ EFGH? Explain your reasoning.

- 3. The quadrilaterals below are similar: *QUAD* ~ *SIML*
 - a. If *QUAD* is the pre-image, what is the scale factor?
 - b. Find $m \angle D$, $m \angle U$, and $m \angle A$.
 - c. Use the scale factor to find the unknown sides lengths *SL* and *MI*.

- Similarity Transformations
 - > A dilation or composition of one or more dilations and one or more congruence transformations.
 - > Two figures are SIMILAR if and only if there is a similarity transformation that maps one figure to the other figure.

EXAMPLES – Determining Whether Polygons are Similar

Use the definition of similarity in terms of similarity transformations to determine whether the two figures are similar. Explain your answer.

3. Is PQRS ~ WXYZ?

4. Is $\triangle DEF \sim \triangle ACB$?

The figures shown are similar. Assume that the figure on the left is the pre-image. List the sequence of transformations that verifies the similarity of the two figures.

4.4 - TRIANGLE SIMILARITY

OBJECTIVES:

- GIVEN TWO TRIANGLES, EXPLAIN WHY THEY ARE SIMILAR
- GIVEN TWO TRIANGLES AND A SIMILARITY THEOREM, DETERMINE THE ADDITIONAL INFORMATION NEEDED TO PROVE SIMILARITY
- GIVEN TWO TRIANGLES, DETERMINE WHETHER THEY ARE SIMILAR
- USE SCALE FACTOR AND PROPORTIONS TO FIND MISSING SEGMENT LENGTHS IN TRIANGLES
- ✤ Angle-Angle Similarity Postulate (AA)
 - If two angles of one triangle are congruent to two angles of another triangle, then the two triangles are similar.

EXAMPLE: Determine whether the triangles are similar. Explain your reasoning. If they are similar write a similarity statement.

Side-Side-Side Similarity Postulate (SSS)

If the three sides of one triangle are proportional to the corresponding sides of another, then the triangles are similar.

EXAMPLE: Is either $\triangle DEF$ or $\triangle GHJ$ similar to $\triangle ABC$? Explain your reasoning.

- Side-Angle-Side Similarity Postulate (SAS)
 - If an angle of one triangle is congruent to an angle of a second triangle and the lengths of the sides that include these angles are proportional, then the triangles are similar.

EXAMPLE: Determine whether the two triangles are similar. Explain your reasoning. If they are similar, write a similarity statement.

EXAMPLES – Determining Similarity

Are the two triangles similar? Explain your reasoning. If they are similar, identify the similarity theorem and complete the similarity statement.

1. $\triangle SRQ \sim$ _____

EXAMPLES – The triangles are similar. Set up and solve a proportion to find the value of the variable.

6. $\triangle AEB \sim \triangle ADC$

7. $\triangle ABC \sim \triangle FEC$

4.5 — SIMILARITY IN RIGHT TRIANGLES

OBJECTIVE:

- USE THE RIGHT TRIANGLE/ALTITUDE SIMILARITY THEOREM AND THE GEOMETRIC MEAN TO FIND MISSING SIDE AND SEGMENTS LENGTHS OF SIMILAR RIGHT TRIANGLES AND SOLVE APPLICATION PROBLEMS
- ✤ Geometric Mean
 - > For any two positive numbers *a* and *b*, the geometric mean is the positive number *x* such that: $\frac{a}{x} = \frac{x}{b}$

EXAMPLES – Find the geometric mean between the following numbers. If necessary, express as a radical in simplest form.

1. 5 and 8

2. 4 and 18

- Introduction
 - $\succ \quad \text{Explain } \underline{\text{how}} \bigtriangleup XZW \sim \bigtriangleup YZX \sim \bigtriangleup YXW$

- ✤ Right Triangle/Altitude Similarity Theorem
 - ➢ If an altitude is drawn to the hypotenuse of a right triangle, then the two triangles formed are similar to the original triangle and to each other.
- Right Triangle Altitude/Hypotenuse Theorem
 - The measure of the altitude (drawn from the vertex of the right angle of a right triangle to its hypotenuse) is the geometric mean between the measures of the two segments of the hypotenuse.
 - Let h =altitude \overline{CD}

• Let x & y = the two segments of the hypotenuse: $\overline{AD} \& \overline{BD}$

GEOMETRIC MEAN: $\frac{CD}{AD} = \frac{BD}{CD} \Leftrightarrow \frac{h}{x} = \frac{y}{h}$

- ✤ Right Triangle Altitude/Leg Theorem
 - ➢ If the altitude is drawn to the hypotenuse of a right triangle, each leg of the right triangle is the geometric mean of the hypotenuse and the segment of the hypotenuse adjacent to the leg.
 - Let $a = \log \overline{AC}$ and $x = segment \overline{AD}$

• Let
$$\mathbf{c} = \mathbf{hypotenuse} \overline{AB}$$

GEOMETRIC MEAN: $\frac{AC}{AB} = \frac{AD}{AC} \Leftrightarrow \frac{a}{c} = \frac{x}{a}$

• Let $\boldsymbol{b} = \log \overline{BC}$ and $\boldsymbol{y} = \operatorname{segment} \overline{BD}$

• Let $c = hypotenuse \overline{AB}$

GEOMETRIC MEAN:
$$\frac{BC}{AB} = \frac{BD}{BC} \Leftrightarrow \frac{b}{c} = \frac{y}{b}$$

- ✤ You can label a diagram as shown below.
 - The legs are *a* & *b*, the hypotenuse is *c*, and the altitude is *h*.
 - Notice that segment *x* is adjacent to leg *a*, and that segment *y* is adjacent to leg *b*.

EXAMPLES – Find the value of the variable(s). If necessary, express as a radical in simplest form.

4.6 - PROPORTIONALITY THEOREMS

OBJECTIVES:

- USE THE ANGLE BISECTOR/PROPORTIONAL SIDE THEOREM TO CALCULATE SEGMENT LENGTHS IN TRIANGLES
- USE THE TRIANGLE PROPORTIONALITY THEOREM TO CALCULATE SEGMENT LENGTHS IN TRIANGLES
- USE THE PROPORTIONAL SEGMENTS THEOREM AND THE TRIANGLE MIDSEGMENT THEOREM TO DETERMINE MISSING SEGMENT LENGTHS
- ✤ Introduction:
 - ▶ Given: \overrightarrow{CA} bisects $\angle GCF$
 - Calculate various segment ratios.
 - What do you notice?

- ✤ Angle Bisector/Proportional Side Theorem
 - A bisector of an angle in a triangle divides the opposite side into two segments whose lengths are in the same ratio as the lengths of the sides adjacent to the angle.

EXAMPLES – Use the Angle Bisector/Proportional Side Theorem to set up and solve a proportion to find the value of x.

1.

- Triangle Proportionality Theorem
 - If a line parallel to one side of a triangle intersects the other two sides, then it divides the two sides proportionally.

If
$$\overline{TU} \parallel \overline{QS}$$
, then $\frac{RT}{TQ} = \frac{RU}{US}$.

EXAMPLES – Use the Triangle Proportionality Theorem to set up and solve a proportion to find the value of *x*.

- Converse of the Triangle Proportionality Theorem
 - > If a line divides two sides of a triangle proportionally, then it is parallel to the third side.
- 4. Use the Converse of the Triangle Proportionality Theorem and determine whether $\overline{LM} \parallel \overline{RS}$. Are the segments of the sides proportional?

Proportional Segments Theorem

2.

> If three parallel lines intersect two transversals, then they divide the transversals proportionally.

EXAMPLES – Use the Proportional Segments Theorem to set up and solve a proportion.

5. Find the indicated segment length.

6. Find the value of *x*.

- ✤ Midsegments
 - Midsegment (of a triangle)—A segment that connects the midpoints of two sides of a triangle.
- ✤ The Triangle Midsegment Theorem
 - > The midsegment of a triangle is parallel to the third side of the triangle and is half the measure of the third side of the triangle.

In $\triangle ABC$, if CD = DA and CE = EB, then $\overline{DE} \parallel \overline{AB}$ and $DE = \frac{1}{2}AB$.

EXAMPLES – Use the Triangle Midsegment Theorem to find the indicated segment length.

4.7 — APPLICATIONS WITH SIMILAR FIGURES

OBJECTIVES:

- APPLY PROPERTIES OF SIMILAR FIGURES TO CALCULATE INDIRECT MEASUREMENTS IN REAL WORLD CONTEXTS
- USE PROPORTIONS TO SOLVE PROBLEMS INVOLVING PERIMETER AND AREA OF SIMILAR FIGURES
- Indirect Measurement
 - At times, measuring something directly is impossible, or physically undesirable. When these situations arise, indirect measurement, the technique that uses proportions to calculate measurement, can be implemented.
 - Your knowledge of similar triangles can be very helpful in these situations.

EXAMPLES – Set up and solve a proportion that models the scenario.

1. A 5-foot tall student stands near a flagpole. The flagpole and the student are perpendicular to the ground. The sun's rays strike the flagpole and the student at the same angle. The flagpole casts a 15-foot shadow, and the student casts a 2-foot shadow. Use indirect measurement to find the height of the flagpole.

- ✤ Investigation: Perimeters & Areas of Similar Figures
 - a. Find the scale factor, *k*, for the pair of triangles.
 - b. Find the perimeter of the first triangle.
 - c. Find the perimeter of the second triangle.
 - d. Find the ratio of the perimeters.
 - e. What do you notice about the scale factor and the ratio of the perimeters?
 - f. *Complete the conjecture*: If the scale factor of two similar figures is $\frac{a}{b}$, then the ratio of their perimeters is _____.
 - g. Find the area of the first triangle.
 - h. Find the area of the second triangle.
 - i. Find the ratio of the areas.
 - j. What do you notice about the scale factor and the ratio of the areas?
 - k. *Complete the conjecture*: If the scale factor of two similar figures is $\frac{a}{b}$, then the ratio of their areas is _____.

EXAMPLES:

- 2. The figures in each pair are similar. Compare the first figure to the second. Give the ratio of the perimeters and the ratio of the areas.
- 3. The figures in each pair are similar. The area of the larger pentagon: 135 cm^{2.} Find the area of the other figure to the nearest whole number.

24 cm

