\qquad

6.1 - PARALLELOGRAMS ON THE COORDINATE PLANE

Objectives:

- Show that a quadrilateral is a parallelogram on the coordinate plane
- Identify and verify parallelograms
* Parallelograms
$>$ A parallelogram is a quadrilateral with both pairs of opposite sides parallel.
- $\overline{A B}\|\overline{D C} \& \overline{A D}\| \overline{B C}$

$$
\begin{array}{llr}
\text { DISTANCE FORMULA: } & \text { MIDPOINT FORMULA: } & \text { SLOPE FORMULA: } \\
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & \left(x_{m}, y_{m}\right)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) & m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
\end{array}
$$

* Proving Parallelograms on the Coordinate Plane
> Show that both pairs of opposite sides are parallel.
- How using coordinates?
> Show that both pairs of opposite sides are congruent.
- How using coordinates?
$>$ Show that ONE pair of opposite sides is both parallel AND congruent.
$>$ Show that the diagonals bisect each other.
- How using coordinates?

EXAMPLE:

1. Show that $A B C D$ is a parallelogram.

6.2 - PROPERTIES OF PARILLELOCRIMS

Objectives:

- Know and prove the properties of parallelograms
- Apply the properties of parallelograms to find side lengths, segment lengths, and angle measures
* Parallelograms
$>$ A parallelogram is a quadrilateral with both pairs of opposite sides parallel.
- $\overline{A B}\|\overline{D C} \& \overline{A D}\| \overline{B C}$
* Properties of Parallelograms
$>$ If a quadrilateral is a parallelogram, then...
- Both pairs of opposite sides are congruent
- $\overline{P Q} \cong \overline{S R} \& \overline{Q R} \cong \overline{P S}$

- Consecutive angles are supplementary
- $x^{\circ}+y^{\circ}=180^{\circ}$

- Both pairs of opposite angles are congruent
- $\angle Q \cong \angle S \& \angle P \cong \angle R$

- The diagonals bisect each other
- $\overline{Q M} \cong \overline{M S} \& \overline{P M} \cong \overline{M R}$

* Prove that both pairs of opposite angles are congruent

Given: $\quad A B C D$ is a parallelogram
Prove: $\quad \angle A \cong \angle C \& \angle A B C \cong \angle A D C$

1. $A B C D$ is a parallelogram
2. $\overline{A B}\|\overline{D C} \& \overline{A D}\| \overline{B C}$

REASONS

1. Given
2. Definition of parallelogram

EXAMPLES: USING THE PROPERTIES OF PARALLELOGRAMS

1. $W X Y Z$ is a parallelogram. Find each measure.
a. WV
b. $Y W$
c. $Z V$
d. $Z X$

The diagonals bisect each other.
2. $F E D Y$ is a parallelogram. Find the value of each variable.

Opposite angles are congruent; consecutive angles are supplementary.
3. For the given parallelogram, find the value of the variables.

Opposite sides and angles are congruent; consecutive angles are supplementary.
4. In $S T U V, m \angle T S U=32^{\circ}, m \angle U S V=x^{2}, m \angle T U V=12 x$, and $\angle T U V$ is an acute angle. Find the value of x (that makes sense) and $m \angle U S V$.

Opposite angles are congruent. Remember, since both pairs of opposite sides are parallel, those "parallel/angle" pair relationships exist as well.

6.3 - PROVING QUIDRRILITERILS ARE PIRILLELOGRIMS

Objectives:

- Prove that a quadrilateral is a parallelogram
- Identify and verify parallelograms
* Conditions for Parallelograms
$>$ If both pairs of opposite sides of a quadrilateral are parallel, then the quadrilateral is a parallelogram. (Definition)
$>$ If one pair of opposite sides of a quadrilateral is parallel and congruent, then the quadrilateral is a parallelogram.
- If $\overline{B C} \| \overline{A D}$ and $\overline{B C} \cong \overline{A D}$, then $A B C D$ is a parallelogram.

$>$ If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.
- If $\overline{B C} \cong \overline{A D}$ and $\overline{A B} \cong \overline{C D}$, then $A B C D$ is a parallelogram.

> If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram.
- If $\angle A \cong \angle C$ and $\angle B \cong \angle D$, then $A B C D$ is a parallelogram.

$>$ If an angle of a quadrilateral is supplementary to both of its consecutive angles, then the quadrilateral is a parallelogram
- If $\angle A$ is supplementary to $\angle B$ and $\angle A$ is supplementary to $\angle D$, then $A B C D$ is a parallelogram.

$>$ If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.
- If $\overline{A Z} \cong \overline{Z C}$ and $\overline{B Z} \cong \overline{Z D}$, then $A B C D$ is a parallelogram.

EXAMPLES: IDENTIFYING PARALLELOGRAMS

1. For each quadrilateral $Q U A D$, state the property or definition that proves that $Q U A D$ is a parallelogram.

PROVE THIS PROPERTY:

$>$ If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.
2. Given: $\overline{A B} \cong \overline{C D}$

$$
\overline{B C} \cong \overline{D A}
$$

Prove: $\quad A B C D$ is a parallelogram

STATEMENTS	REASONS

3. Given: $\triangle C A R$ is isosceles w/base $\overline{C R}$

$$
\begin{aligned}
& \overline{A C} \cong \overline{B K} \\
& \angle C \cong \angle K
\end{aligned}
$$

Prove: $\quad B A R K$ is a parallelogram

6.4 - RECTANGLES, RHOMBI, \& SQUIARES

Objectives:

- Apply the properties of rectangles, rhombi, and squares to find side lengths, segment lengths, and angle measures
- Find areas of rectangles, rhombi, and squares
* Special Parallelograms
$>$ Rectangle
- A parallelogram in which at least one angle is a right angle.

Rectangle

Square

- A parallelogram in which at least two consecutive sides are congruent.
> Square
- A parallelogram that is BOTH a rectangle and a rhombus.
$>$ All angles are right angles
- $\angle D A B, \angle A B C, \angle B C D, \angle C D A$ are right angles
$>$ The diagonals are congruent

$$
A=b h
$$

- $\overline{A C} \cong \overline{B C}$

1. Given: $Q R S T$ is a rectangle, $m \angle P T S=34^{\circ}, Q S=10$

$$
m \angle Q T R=
$$

$m \angle Q R T=$ \qquad $m \angle R P S=$ $Q P=$ \qquad
$R T=$ \qquad
$R P=$ \qquad

* Properties of Rhombuses

> All properties of a parallelogram apply!

$>$ All sides are congruent-that is, a rhombus is equilateral

- $\overline{A C} \cong \overline{B C} \cong \overline{A D} \cong \overline{B D}$
$>$ The diagonals bisect the vertex angles
- $\overline{A B}$ bisects $\angle C A D \& \angle C B D$
- $\overline{C D}$ bisects $\angle A C B \& \angle A D B$
$A=\frac{1}{2} d_{1} d_{2}$
$>$ The diagonals are perpendicular bisectors of each other
- $\overline{A B} \perp \overline{C D}$

- $\overline{A B}$ \& $\overline{C D}$ bisect each other
$>$ The diagonals divide the rhombus into four congruent right triangles

2. Given: $A B C D$ is a rhombus, $m \angle B A C=53^{\circ}, D E=8, E C=6$
\qquad
\qquad $m \angle A D C=$ \qquad
$D B=$ \qquad
$A E=$ \qquad
$C D=$ \qquad

Properties of Squares
$>$ All properties of a parallelogram apply!
$>$ All the properties of a rectangle apply:
$A=s^{2}$
$>$ All the properties of a rhombus apply!
$>$ The diagonals form four isosceles right triangles.
3. Given: $L M N P$ is a square, $L K=1$
$m \angle M K N=$ \qquad $m \angle L M K=$ \qquad $m \angle L P K=$
$K N=$ \qquad
$L N=$ \qquad
$M P=$ \qquad

EXAMPLES

4. In order for $R E C T$ to be a rectangle, what must the value of x be?

5. Given: Rectangle $Q R S T$

Set up and solve a system of equations to find the value of the variables.

6. Given: Rhombus HIJK
a. Find the value of the variables: $b, r, \& x$.
b. Find $m \angle J \& m \angle K$.

7. Given: $E F G H$ is a square with a perimeter of $36, E H=x+6, m \angle F=2 y-4$ Find the values of $x \& y$.

6.5 - KITES \& TRAPEZOIDS

Objectives:

- Apply the properties of Kites and trapezoids to find side lengths, segment lengths, and angle measures
- Find areas of Kites and trapezoids

* Kites

$>$ A quadrilateral with two pairs of consecutive congruent sides with opposite sides that are NOT congruent.

* Properties of Kites
$>$ The diagonals are perpendicular to each other
- $\overline{A B} \perp \overline{C D}$
$>$ One diagonal is the perpendicular bisector of the other
- $\overline{A B}$ bisects $\overline{C D}$
$>$ One of the diagonals bisects a pair of opposite angles

- $\overline{A B}$ bisects $\angle C A D \& \angle C B D$
$>$ One pair of opposite angles are congruent
- $\angle A C B \cong \angle A D B$

$$
A=\frac{1}{2} d_{1} d_{2}
$$

EXAMPLES: USING THE PROPERTIES OF KITES

1. Find the values of x and y in the kite shown.
2. Find $R V$ in the kite shown.

3. Given: Kite KITE

Find the values of x and y in the kite shown.

* Trapezoids
$>$ A quadrilateral with exactly one pair of parallel sides.
- $\overline{B C} \| \overline{A D}$
$>$ Properties of Trapezoids
- Consecutive non-base angles are supplementary.
- $\angle A$ is supplementary to $\angle B$
- $\angle C$ is supplementary to $\angle D$

Midsegment of a Trapezoid

- Parallel to the bases
- Length is half the sum of the lengths of the bases:

$$
X Y=\frac{1}{2}(A D+B C)
$$

* Isosceles Trapezoids
$>$ A trapezoid with congruent non-parallel sides (legs)
- $\overline{Q P} \cong \overline{R S}$
$>$ Properties of Isosceles Trapezoids
- All properties of a trapezoid apply
- The base angles are congruent.

- $\angle Q P S \cong \angle R S P$
- $\angle P Q R \cong \angle S R Q$
- The diagonals are congruent.
- $\overline{Q S} \cong \overline{R P}$

$$
A=\frac{1}{2} h\left(b_{1}+b_{2}\right)
$$

EXAMPLES: USING THE PROPERTIES OF TRAPEZOIDS

5. Find the value of x in the trapezoid.

6. Is the quadrilateral a trapezoid? Explain your reasoning.

7. Given: Isosceles trapezoid EFGH
a. Find the value of z.
b. Find $m \angle G$.

6.6.D1 - PROVING SPECILL QUIDRILATERILS IN THE COORDINATE PLANE

Objective:

- Use the distance, slope, and midpoint formulas to prove that a figure graphed in the coordinate plane is special quadrilateral: rectangle, rhombus, square, Kite, or trapezoid

	Distance Formula	Midpoint Formula	Slope Formula
Formula	$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$	$M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$	$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
When to Use It	To determine whether - sides are congruent - diagonals are congruent	To determine - the coordinates of the midpoint of a side - whether diagonals bisect each other	To determine whether - opposite sides are parallel - diagonals are perpendicular - sides are perpendicular

EXAMPLES: QUADRILATERALS IN THE COORDINATE PLANE

1. Show that $B O X Y$ is a rectangle.
(Remember, you must first show that $B O X Y$ is a parallelogram.)

Use the diagonals to determine whether a parallelogram with the given vertices is a rectangle, rhombus, or square. Give all the names that apply.
2. $A(-2,-1), I(-7,-4), D(-9,-8), M(-5,-6)$

6.6.D2 - PROOFS WITH SFECIAL QUADRILITERILS

Objective:

- Prove that a quadrilateral is a special quadrilateral: rectangle, rhombus, square, kite, or trapezoid

1. Write and solve an equation to find the value of x.
a. Is $J K L M$ a parallelogram? Explain.
b. Is $J K L M$ a rectangle? Explain.
c. Is $J K L M$ a rhombus? Explain.

2. Given: $R S T U$ is a square; $\overline{V R} \cong \overline{S W}$
a. Is $V W T U$ an isosceles trapezoid?
b. Is $\triangle V W X$ an isosceles triangle?
c. Is $\triangle U T X$ an isosceles triangle?

3. Determine if the conclusion is valid and explain your reasoning. If the conclusion is NOT valid, tell what additional information is needed to make it valid.

Given: \quad| $\overline{A B}$ | $\cong \overline{C D}$ |
| :--- | :--- |
| | $\overline{B C} \cong \overline{A D}$ |
| | $\overline{A D}$ |
| $\overline{A C}$ | $\perp \overline{B D}$ |

Conclusion: $\quad A B C D$ is a square

4. Determine if the conclusion is valid and explain your reasoning. If the conclusion is NOT valid, tell what additional information is needed to make it valid.

Given: $\quad \overline{A B} \cong \overline{B C}$
Conclusion: $\quad A B C D$ is a rhombus

5. In rhombus MATH, the coordinates of the endpoints of the diagonal $\overline{M T}$ are $M(0,-1)$ and $T(4,7)$. Write an equation of the line that contains diagonal $\overline{A H}$. Using the given information, explain how you know that your line contains diagonal $\overline{A H}$.
6. Given: $Y T W X$ is a parallelogram

$$
\begin{aligned}
& \overline{Y P} \perp \overline{T W} \\
& \overline{Z W} \perp \overline{T Y} \\
& \overline{T P} \cong \overline{T Z}
\end{aligned}
$$

Prove: $\quad T W X Y$ is a rhombus

STATEMENTS	REASONS
1. $Y T W X$ is a parallelogram	Given
2. $\overline{Y P} \perp \overline{T W}$	Given
3.	
4. $\overline{Z W} \perp \overline{T Y}$	Given
5.	
6.	
7. $\overline{T P} \cong \overline{T Z}$	Given
8.	
9. $\triangle T Y P \cong \triangle T W Z$	
10.	CPCTC
11. $T W X Y$ is a rhombus	Definition of rhombus - A parallelogram with at least one pair of consecutive sides congruent

