Honors Geometry: Notes Packet

ATTACH 6.1 - INVESTIGATING PARALLELOGRAMS

6.1 - PARALLELOGRAMS ON THE COORDINATE PLANE

<u>Objectives:</u>

- Show that a quadrilateral is a parallelogram on the coordinate plane
- Identify and verify parallelograms

Parallelograms

- A <u>parallelogram</u> is a quadrilateral with both pairs of opposite sides parallel.
 - $\bullet \quad \overline{AB} \parallel \overline{DC} \And \overline{AD} \parallel \overline{BC}$

DISTANCE FORMULA:

MIDPOINT FORMULA:

D

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \quad (x_m, y_m) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) \qquad m = \frac{y_2 - y_1}{x_2 - x_1}$$

- Proving Parallelograms on the Coordinate Plane
 - > Show that both pairs of opposite sides are parallel.
 - How using coordinates?
 - > Show that both pairs of opposite sides are congruent.
 - How using coordinates?
 - > Show that ONE pair of opposite sides is both parallel AND congruent.
 - > Show that the diagonals bisect each other.
 - How using coordinates?

EXAMPLE:

1. Show that *ABCD* is a parallelogram.

Name: _____

6.2 - PROPERTIES OF PARALLELOGRAMS

<u>Objectives:</u>

- Know and prove the properties of parallelograms
- Apply the properties of parallelograms to find side lengths, segment lengths, and angle measures
- ✤ Parallelograms
 - > A <u>parallelogram</u> is a quadrilateral with both pairs of opposite sides parallel.
 - $\overline{AB} \parallel \overline{DC} \And \overline{AD} \parallel \overline{BC}$
- Properties of Parallelograms
 - > If a quadrilateral is a parallelogram, then...
 - Both pairs of opposite sides are congruent

Consecutive angles are supplementary
x° + y° = 180°

Both pairs of opposite angles are congruent

The diagonals bisect each other

THE SUM OF ALL FOUR ANGLES IN ANY QUADRILATERAL IS 360°.

* Prove that both pairs of opposite angles are congruent

Given: *ABCD* is a parallelogram

1. *ABCD* is a parallelogram

2. $\overline{AB} \parallel \overline{DC} \& \overline{AD} \parallel \overline{BC}$

Prove: $\angle A \cong \angle C \& \angle ABC \cong \angle ADC$

STATEMENTS

REASONS

- 1. Given
 - 2. Definition of parallelogram

EXAMPLES: USING THE PROPERTIES OF PARALLELOGRAMS

- 1. *WXYZ* is a parallelogram. Find each measure.
 - a. WV
 - b. YW
 - c. ZV
 - d. ZX

The diagonals bisect each other.

2. *FEDY* is a parallelogram. Find the value of each variable.

Opposite angles are congruent; consecutive angles are supplementary.

3. For the given parallelogram, find the value of the variables.

Opposite sides and angles are congruent; consecutive angles are supplementary.

4. In *STUV*, $m \angle TSU = 32^\circ$, $m \angle USV = x^2$, $m \angle TUV = 12x$, and $\angle TUV$ is an acute angle. Find the value of *x* (that makes sense) and $m \angle USV$.

Opposite angles are congruent. Remember, since both pairs of opposite sides are parallel, those "parallel/angle" pair relationships exist as well.

6.3 - PROVING QUADRILATERALS ARE PARALLELOGRAMS

<u>Objectives:</u>

- Prove that a quadrilateral is a parallelogram
- Identify and verify parallelograms
- Conditions for Parallelograms
 - If both pairs of opposite sides of a quadrilateral are parallel, then the quadrilateral is a parallelogram. (Definition)
 - If one pair of opposite sides of a quadrilateral is parallel and congruent, then the quadrilateral is a parallelogram.
 - If $\overline{BC} \parallel \overline{AD}$ and $\overline{BC} \cong \overline{AD}$, then *ABCD* is a parallelogram.
 - If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.
 - If $\overline{BC} \cong \overline{AD}$ and $\overline{AB} \cong \overline{CD}$, then *ABCD* is a parallelogram.
 - If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram.
 - If $\angle A \cong \angle C$ and $\angle B \cong \angle D$, then *ABCD* is a parallelogram.
 - If an angle of a quadrilateral is supplementary to both of its consecutive angles, then the quadrilateral is a parallelogram
 - If $\angle A$ is supplementary to $\angle B$ and $\angle A$ is supplementary to $\angle D$, then *ABCD* is a parallelogram.
 - ➢ If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.
 - If $\overline{AZ} \cong \overline{ZC}$ and $\overline{BZ} \cong \overline{ZD}$, then *ABCD* is a parallelogram.

EXAMPLES: IDENTIFYING PARALLELOGRAMS

1. For each quadrilateral *QUAD*, state the property or definition that proves that *QUAD* is a parallelogram.

Chapter 6: Quadrilaterals

PROVE THIS PROPERTY: > If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram. $\overline{AB} \cong \overline{CD}$ Given: С 2. В $\overline{BC} \cong \overline{DA}$ ABCD is a parallelogram Prove: Α REASONS STATEMENTS Given: $\triangle CAR$ is isosceles w/base \overline{CR} В 3. А $\overline{AC} \cong \overline{BK}$ $\angle C \cong \angle K$ Prove: BARK is a parallelogram R К REASONS STATEMENTS

D

В

Properties of Squares

- > All properties of a parallelogram apply!
- > All the properties of a rectangle apply!
- > All the properties of a rhombus apply!
- > The diagonals form four isosceles right triangles.
- 3. Given: *LMNP* is a square, LK = 1

<i>m∠MK</i> N =	<i>m∠LMK</i> =	$m \angle LPK = $	
KN =	LN =	$MP = _$	

EXAMPLES

- 4. In order for *RECT* to be a rectangle, what must the value of *x* be?
- 5. Given: Rectangle *QRST* Set up and solve a system of equations to find the value of the variables.

 $A = s^2$

r+1/2

6. Given: Rhombus *HIJK*

- a. Find the value of the variables: *b*, *r*, & *x*.
- b. Find $m \angle J \& m \angle K$.

b-3 $(2x+6)^{\circ}$

6.5 - KITES & TRAPEZOIDS

Objectives:

- Apply the properties of kites and trapezoids to find side lengths, segment lengths, and angle measures
- Find areas of kites and trapezoids
- ✤ Kites
 - A quadrilateral with two pairs of consecutive congruent sides with opposite sides that are NOT congruent.
- Properties of Kites
 - > The diagonals are perpendicular to each other
 - $\overline{AB} \perp \overline{CD}$
 - > One diagonal is the perpendicular bisector of the other
 - \overline{AB} bisects \overline{CD}
 - > One of the diagonals bisects a pair of opposite angles
 - \overline{AB} bisects $\angle CAD \& \angle CBD$
 - > One pair of opposite angles are congruent
 - $\angle ACB \cong \angle ADB$

EXAMPLES: USING THE PROPERTIES OF KITES

1. Find the values of *x* and *y* in the kite shown.

3. Given: Kite *ABCD* Find the value of *x*.

2. Find RV in the kite shown.

4. Given: Kite *KITE* Find the values of *x* and *y* in the kite shown.

$$A=\frac{1}{2}d_1d_2$$

✤ Trapezoids

> A quadrilateral with exactly one pair of parallel sides.

• $\overline{BC} \parallel \overline{AD}$

- > Properties of Trapezoids
 - Consecutive non-base angles are supplementary.
 - $\angle A$ is supplementary to $\angle B$
 - $\angle C$ is supplementary to $\angle D$
- ✤ Midsegment of a Trapezoid
 - Parallel to the bases
 - Length is half the sum of the lengths of the bases:

$$XY = \frac{1}{2}(AD + BC)$$

- Isosceles Trapezoids
 - > A trapezoid with congruent non-parallel sides (legs)
 - $\overline{QP} \cong \overline{RS}$
 - Properties of Isosceles Trapezoids
 - All properties of a trapezoid apply
 - The base angles are congruent.
 - $\angle QPS \cong \angle RSP$
 - $\angle PQR \cong \angle SRQ$
 - The diagonals are congruent.

•
$$\overline{QS} \cong \overline{RP}$$

EXAMPLES: USING THE PROPERTIES OF TRAPEZOIDS

5. Find the value of *x* in the trapezoid.

6. Is the quadrilateral a trapezoid? Explain your reasoning.

- 7. Given: Isosceles trapezoid EFGH
 - a. Find the value of z.
 - b. Find $m \angle G$.

$$A = \frac{1}{2}h(b_1 + b_2)$$

6.6.D1 - PROVING SPECIAL QUADRILATERALS IN THE COORDINATE PLANE

<u>Objective:</u>

• Use the distance, slope, and midpoint formulas to prove that a figure graphed in the coordinate plane is special quadrilateral: rectangle, rhombus, square, kite, or trapezoid

	Distance Formula	Midpoint Formula	Slope Formula
Formula	$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	$M=\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$	$m = \frac{y_2 - y_1}{x_2 - x_1}$
When to Use It	To determine whether • sides are congruent • diagonals are congruent	To determine • the coordinates of the midpoint of a side • whether diagonals bisect each other	To determine whether • opposite sides are parallel • diagonals are perpendicular • sides are perpendicular

EXAMPLES: QUADRILATERALS IN THE COORDINATE PLANE

1. Show that *BOXY* is a rectangle.

(Remember, you must first show that *BOXY* is a parallelogram.)

Use the <u>diagonals</u> to determine whether a parallelogram with the given vertices is a rectangle, rhombus, or square. Give all the names that apply.

2. A(-2,-1), I(-7,-4), D(-9,-8), M(-5,-6)

6.6.D2 - PROOFS WITH SPECIAL QUADRILATERALS

<u>Objective:</u>

- Prove that a quadrilateral is a special quadrilateral: rectangle, rhombus, square, kite, or trapezoid
- 1. Write and solve an equation to find the value of *x*.
 - a. Is *JKLM* a parallelogram? Explain.
 - b. Is *JKLM* a rectangle? Explain.
 - c. Is *JKLM* a rhombus? Explain.

- 2. Given: *RSTU* is a square; $\overline{VR} \cong \overline{SW}$
 - a. Is VWTU an isosceles trapezoid?
 - b. Is $\triangle VWX$ an isosceles triangle?
 - c. Is $\triangle UTX$ an isosceles triangle?

3. Determine if the conclusion is valid and explain your reasoning. If the conclusion is NOT valid, tell what additional information is needed to make it valid.

Given:	$\overline{AB} \cong \overline{CD}$
	$\overline{BC} \cong \overline{AL}$
	$\overline{AD} \perp \overline{DC}$
	$\overline{AC} \perp \overline{BD}$

Conclusion: *ABCD* is a square

4. Determine if the conclusion is valid and explain your reasoning. If the conclusion is NOT valid, tell what additional information is needed to make it valid.

Given: $\overline{AB} \cong \overline{BC}$ Conclusion:ABCD is a rhombus

5. In rhombus MATH, the coordinates of the endpoints of the diagonal \overline{MT} are M(0, -1) and T(4,7). Write an equation of the line that contains diagonal \overline{AH} . Using the given information, explain how you know that your line contains diagonal \overline{AH} .

6. Given: Prove:	YTWX is a parallelogram $\overline{YP} \perp \overline{TW}$ $\overline{ZW} \perp \overline{TY}$ $\overline{TP} \cong \overline{TZ}$ TWXY is a rhombus		Z T P
STATEMENTS		REASONS	

STATEMENTS	
1. <i>YTWX</i> is a parallelogram	Given
2. $\overline{YP} \perp \overline{TW}$	Given
3.	
4. $\overline{ZW} \perp \overline{TY}$	Given
5.	
6.	
7. $\overline{TP} \cong \overline{TZ}$	Given
8.	
9. $\triangle TYP \cong \triangle TWZ$	
10.	СРСТС
11. <i>TWXY</i> is a rhombus	Definition of rhombus - A parallelogram with at least one pair of consecutive sides congruent