1.3 - Midpoints \& Bisectors

The grid shows the locations of a sandbox and a fountain in a park. Each grid square represents a square that is one meter long and one meter wide.

1. Find the distance between the Sandbox and the Fountain.

Name: \qquad
Past due on: \qquad Period:

2. You decide to meet your friend halfway between the fountain and the sandbox.
a. Calculate the midpoint of the line segment that passes through the point representing the sandbox and the point representing the fountain. Then, plot the point.
b. Verify your calculations in part (a) by constructing the midpoint of the line connecting the sandbox and the fountain.
3. The swings are located at $(-4,7)$, which is halfway between the sandbox and the slide.
a. Plot and label the point representing the swings.
b. Calculate the location of the slide. Show your work. Then, plot and label the point representing the slide.
c. Verify your calculations in part (b) by constructing the midpoint of the line connecting the sandbox and the slide.

Graph the three points on the coordinate plane: $A(-10,3), B(-4,3), C(-7,11)$. Connect the three points to form triangle ABC.
4. Find the midpoint of $\overline{A C}$. Plot and label M_{1}.
5. Find the midpoint of $\overline{B C}$. Plot and label M_{2}.
6. Connect the two midpoints $M_{1} \& M_{2}$.

7. Calculate the distance between points $M_{1} \& M_{2}$.
8. Calculate the distance between points $A \& B$.
9. Compare the length of the midsegment - line segment $M_{1} M_{2}$ - of the triangle to the length of the base of the triangle, $\overline{A B}$.

Locate the midpoint of each line segment using construction tools and label it point M.
10.

11.

Chapter 1: Tools of Geometry

