12.1 - COMPLETING THE SQUIIRE

* Perfect Square Trinomials

$25 x^{2}$	$+60 x$	$+36$
,	今	$\sqrt{\square}$
$5 x$	仑	6
§	$2 \cdot 5 x \cdot 6$	\checkmark

First you take the square roots of terms one and three; Double their product, and you check and see; If it matches term two, then you can declare, "The three-termed trinomial is a perfect square."

Which of the following are perfect square trinomials?

$$
\begin{array}{lll}
16 x^{2}-24 x+9 & 9 x^{2}+6 x+1 & 25 x^{2}-60 x+36 \\
4 x^{2}-4 x-4 & x^{2}-8 x+81 & 36 x^{2}-84 x+49
\end{array}
$$

* Patterns in Perfect Square Trinomials
$>$ What do you notice about the constants at the end of each perfect square trinomial? How are they related to the original binomial that was squared?

Binomial
Squared

$(x+5)^{2}=(x+5)(x+5)=x^{2}+10 x+25$
$(x-8)^{2}=(x-8)(x-8)=x^{2}-16 x+64$
$>$ How is the middle term of the perfect square trinomial related to the original binomial that's being squared?

* Completing the Square for $x^{2}+b x+c$
$>$ Take half of b
- Write this down inside the parentheses.
$>$ Square it to find c

$$
x^{2}+b x+c=\left(x+\frac{b}{2}\right)^{2} \& c=\left(\frac{b}{2}\right)^{2}
$$

What number will make this a perfect square trinomial?

FKSNMPKB8

Find the value that completes the square and then rewrite as a perfect square in factored form.

1. $x^{2}+18 x+$ \qquad
2. $x^{2}-30 x+$ \qquad
3. $x^{2}+5 x+$ \qquad

The equation $y=(x-h)^{2}+k$ represents a parabola with vertex (h, k). You can use the method of completing the square to find the vertex of quadratic functions in standard form $y=x^{2}+b x+c$.

* Standard Form \rightarrow Vertex Form

$>$ Completing the Square $(a=1)$

Example:

- Sort/organize the right-hand side, leaving a positive blank after the linear term and a negative blank after the constant term
- Set up your square
- Take half the coefficient of the linear term; write it down. Square it; add it after the linear term and subtract it from the constant term: "fill in the blanks"
- Simplify

$$
\begin{gathered}
y=\underbrace{y=\underbrace{x^{2}-4 x+4}+8-4}_{\substack{y=x^{2}-4 x+8 \\
y=(x-)^{2} \\
x^{2}-4 x+}+8-} \\
y=(x-2)^{2}+4
\end{gathered}
$$

Vertex: $(2,4)$

FMSNMPKB8

Complete the square and write the vertex form of the quadratic function. Identify the coordinates of its vertex and state whether the vertex represents a maximum or a minimum value.
4. $y=x^{2}+16 x+71$
5. $y=x^{2}-12 x+46$

More examples of changing forms of quadratic functions:
6. The factored form of a quadratic function is given. Multiply and write the function in standard form.

$$
y=-2(x-1)(x+3)
$$

7. The standard form of a quadratic function is given. Write the function in factored form and then identify the zeros of the function.

$$
y=3 x^{2}+15 x+18
$$

Notes: Lesson 12.7 - Completing the Square

* Standard Form \rightarrow Vertex Form

$>$ Completing the Square $(a \neq 1)$

Example:

- Factor out the coefficient of the quadratic term from the first two terms.
- Sort/organize the right-hand side, leaving a positive blank after the linear term and a negative blank after the constant term
- Set up your square
- Take half the coefficient of the linear term; write it down. Square it; add it after the linear term
- Multiply it by the coefficient factor and subtract the product from the constant term
- Simplify

$$
\begin{gathered}
y=-3 x^{2}+12 x-13 \\
y=-3\left(x^{2}-4 x\right)-13 \\
y=-3 \underbrace{3}_{y}(\underbrace{x^{2}-4 x+\ldots})-13-- \\
y=-3(x-)^{2} \\
y=-3(x-2)^{2}-1
\end{gathered}
$$

FKANTPKB8:

Complete the square and write the vertex form of the quadratic function. Identify the coordinates of its vertex and state whether the vertex represents a maximum or a minimum value.
8. $y=-x^{2}-14 x-59$
9. $y=2 x^{2}-36 x+170$
10. $y=5 x^{2}+70 x+77$
11. $y=-5 x^{2}+40 x+1$

