12.7 - COMPLETING THE SQUARE

*	Perfect Square T	rinomials						
	$25x^2$ \bigcirc 5x $5x$	+ 60x	+36 ↓ 6 ☆	First "T	First you take the square roots of terms one and three; Double their product, and you check and see; If it matches term two, then you can declare, "The three-termed trinomial is a perfect square."			
Which of the following are perfect square t $16x^2 - 24x + 9$				trinomials? $9x^2 + 6x + 1$	omials? $x^2 + 6x + 1$		$25x^2 - 60x + 36$	
	$4x^2 - 4x - 4$			$x^2 - 8x + 81$		$36x^2 - 8$	4x + 49	
*	Patterns in Perfe ➤ What do you	`rinomials ıt the const	ants at the	Binomial Squared		Perfect Square Trinomial		
end of each perfect square trinomial? How are they related to the original binomial that was				(x + 5) ² =	(x + 5)(x + 5)	= x ² + 10x + 25		

- How is the middle term of the perfect square trinomial related to the original binomial that's being squared?
- Completing the Square for $x^2 + bx + c$
 - \succ Take half of *b*

squared?

- Write this down inside the parentheses.
- > Square it to find c

$$x^{2} + bx + c = \left(x + \frac{b}{2}\right)^{2} \& c = \left(\frac{b}{2}\right)^{2}$$

What number will make this a perfect square trinomial?

 $(x-8)^2 = (x-8)(x-8) = x^2 - 16x + 64$

EXAMPLES:

Find the value that completes the square and then rewrite as a perfect square in factored form.

1. $x^2 + 18x + _$ 2. $x^2 - 30x + _$ 3. $x^2 + 5x + _$

Notes: Lesson 12.7 - Completing the Square

The equation $y = (x - h)^2 + k$ represents a parabola with vertex (h, k). You can use the method of completing the square to find the vertex of quadratic functions in standard form $y = x^2 + bx + c$.

- Standard Form \rightarrow Vertex Form
 - > Completing the Square (a = 1)

Example:

- Sort/organize the right-hand side, leaving a positive blank after the linear term and a negative blank after the constant term
- Set up your square
- Take half the coefficient of the linear term; write it down. Square it; add it after the linear term and subtract it from the constant term: "fill in the blanks"
- Simplify

 $y = x^{2} - 4x + 8$ $y = \underbrace{x^{2} - 4x + }_{.} + 8 - \underbrace{x^{2} - 4x + }_{.} + 8 - \underbrace{x^{2} - 4x + 4}_{.} + 8 - 4$ $y = \underbrace{x^{2} - 4x + 4}_{.} + 8 - 4$ $y = (x - 2)^{2} + 4$ Vertex: (2, 4)

EXAMPLES:

Complete the square and write the vertex form of the quadratic function. Identify the coordinates of its vertex and state whether the vertex represents a maximum or a minimum value.

4. $y = x^2 + 16x + 71$

5.
$$y = x^2 - 12x + 46$$

More examples of changing forms of quadratic functions:

6. The factored form of a quadratic function is given. Multiply and write the function in standard form.

$$y = -2(x-1)(x+3)$$

7. The standard form of a quadratic function is given. Write the function in factored form and then identify the zeros of the function.

$$y = 3x^2 + 15x + 18$$

Notes: Lesson 12.7 - Completing the Square

- Standard Form \rightarrow Vertex Form
 - ▶ Completing the Square $(a \neq 1)$

Example:

- Factor out the coefficient of the quadratic term from the first two terms.
- Sort/organize the right-hand side, leaving a positive blank after the linear term and a negative blank after the constant term
- Set up your square
- Take half the coefficient of the linear term; write it down. Square it; add it after the linear term
- Multiply it by the coefficient factor and subtract the product from the constant term
- Simplify

$$y = -3x^{2} + 12x - 13$$

$$y = -3(x^{2} - 4x) - 13$$

$$y = -3(x^{2} - 4x + _) - 13 - _$$

$$y = -3(x - _)^{2}$$

$$y = -3(x^{2} - 4x + 4) - 13 - (-12)$$

$$y = -3(x - 2)^{2} - 1$$

EXAMPLES:

Complete the square and write the vertex form of the quadratic function. Identify the coordinates of its vertex and state whether the vertex represents a maximum or a minimum value.

8.
$$y = -x^2 - 14x - 59$$

9. $y = 2x^2 - 36x + 170$

10. $y = 5x^2 + 70x + 77$

11.
$$y = -5x^2 + 40x + 1$$