2.3.D1 – Forms of Proof

Identify the property demonstrated in each example.

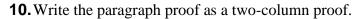
- m∠ABC = m∠XYZ m∠ABC - m∠RST = m∠XYZ - m∠RST
 ∠JKL ≅ ∠JKL
- 5. $m\overline{XY} = 4 \text{ cm and } m\overline{BC} = 4 \text{ cm},$ so $m\overline{XY} = m\overline{BC}$
- **7.** GH = JKGH - RS = JK - RS

- 2. $m\overline{QT} = m\overline{TU}$ $m\overline{QT} + m\overline{WX} = m\overline{TU} + m\overline{WX}$ 4. GH = MN and MN = OP, so GH = OP6. $\overline{PR} \cong \overline{PR}$
- 8. $m \angle 1 = 134^\circ$ and $m \angle 2 = 134^\circ$, so $m \angle 1 = m \angle 2$

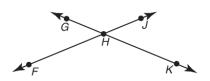
<u>ON A SEPARATE SHEET OF PAPER</u>: Write each given proof as the indicated proof.

9. Write the two-column proof of the Congruent Supplement Theorem as a paragraph proof.

Statements	Reasons
1. $\angle 1$ is supplementary to $\angle 2$	1. Given
2. $\angle 3$ is supplementary to $\angle 4$	2. Given
3. ∠2 ≅ ∠4	3. Given
4. $m \angle 2 = m \angle 4$	4. Definition of congruent angles
5. $m \angle 1 + m \angle 2 = 180^{\circ}$	5. Definition of supplementary angles
6. $m \angle 3 + m \angle 4 = 180^{\circ}$	6. Definition of supplementary angles
7. $m \angle 1 + m \angle 2 = m \angle 3 + m \angle 4$	7. Substitution Property
8. $m \perp 1 + m \perp 2 = m \perp 3 + m \perp 2$	8. Substitution Property
9. <i>m</i> ∠1 = <i>m</i> ∠3	9. Subtraction Property of Equality
10. ∠1 ≅ ∠3	10. Definition of congruent angles



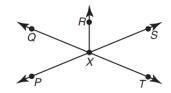
Given: $\overline{GH} \cong \overline{HJ}$ and $\overline{FH} \cong \overline{HK}$ Prove: $\overline{GK} \cong \overline{FJ}$



By the Segment Addition Postulate, GK = GH + HK. You are given that $\overline{GH} = \overline{HJ}$, so GH = HJ by the definition of congruent segments, and you can use substitution to write GK = HJ + HK. You are also given that $\overline{FH} \cong \overline{HK}$, so FH = HK by the definition of congruent segments, and you can use substitution to write GK = HJ + FH. By the Segment Addition Postulate, FJ = FH + HJ. So, you can use substitution to write GK = FJ. By the definition of congruent segments, $\overline{GK} \cong \overline{FJ}$.

11.Write the paragraph proof as a flow-chart proof.

Given: $m \angle QXR = m \angle SXR$ Prove: $m \angle PXR = m \angle TXR$



By the Angle Addition Postulate, $m \angle TXR = m \angle TXS + m \angle SXR$. It is given that $m \angle QXR = m \angle SXR$, so by substitution, $m \angle TXR = m \angle TXS + m \angle QXR$. Angles *PXQ* and *TXS* are vertical angles by the definition of vertical angles. Vertical angles are congruent by the Vertical Angle Theorem, so $\angle PXQ \cong \angle TXS$, and by the definition of congruent angles, $m \angle PXQ = m \angle TXS$. Using substitution, you can write $m \angle TXR = m \angle PXQ + m \angle QXR$. By the Angle Addition Postulate, $m \angle PXR = m \angle PXQ + m \angle QXR$. So, you can use substitution to write $m \angle PXR = m \angle TXR$.

12. Write the flow chart proof as a two-column proof.

