\qquad

2.5 - Parallel Line Converse Theorems

Past due on: \qquad Period: \qquad
From your text, complete the problems below. Attach those pages to this sheet.

1. Page 199, "Talk the Talk"
2. Pages 208-209, "Talk the Talk"
3. Given: $\angle 2 \cong \angle 7 \cong \angle 19$

$$
m \angle 2=125^{\circ}
$$

Determine the measure of each angle in the diagram.

$m \angle 1=$	$m \angle 2=125^{\circ}$
$m \angle 3=$	$m \angle 4=$
$m \angle 5=$	$m \angle 6=$
$m \angle 7=$	$m \angle 8=$
$m \angle 9=$	$m \angle 10=$
$m \angle 11=$	$m \angle 12=$
$m \angle 13=$	$m \angle 14=$
$m \angle 15=$	$m \angle 16=$
$m \angle 17=$	$m \angle 18=$
$m \angle 19=$	$m \angle 20=$

4. Given: $\ell_{1} \| \ell_{2}$
$\ell_{3} \| \ell_{4}$
Using the diagram, provide the appropriate theorem or postulate that supports each statement.

Statement	Theorem or Postulate
1. $\angle 3 \cong \angle 13$	
2. $\angle 9 \cong \angle 11$	
3. $\angle 10 \cong \angle 14$	
$4 . \angle 9$ and $\angle 10$ are supplementary angles.	
5. $\angle 6$ and $\angle 11$ are supplementary angles.	
6. $\angle 12 \cong \angle 14$	

Two-Column Proof Problems:

5. Use the Corresponding Angles Postulate to prove the SameSide Interior Angles Theorem.

Given: $\quad w \| x$
Prove: $\quad \angle 3 \& \angle 5$ are supplementary angles

6. Use the Converse of the Corresponding Angles Postulate to prove the Converse of the Alternate Interior Angles Theorem.

Given: $\quad \angle 3 \cong \angle 6$
Prove: $\quad w \| x$
7. Use the Converse of the Corresponding Angles Postulate to prove the Converse of the Alternate Exterior Angles Theorem: "If two lines and a transversal form alternate exterior angles that are congruent, then the two lines are parallel."

Given: $\quad \angle 1 \cong \angle 8$
Prove: $\quad w \| x$
8. Use the Converse of the Corresponding Angles Postulate to prove the Converse of the Same-Side Interior Angles Theorem.

Given: $\quad \angle 3 \& \angle 5$ are supplementary
Prove: $\quad w \| x$
9. Use the Converse of the Corresponding Angles Postulate to prove the Converse of the Same-Side Exterior Angles Theorem: "If two lines and a transversal form same-side exterior angles that are supplementary, then the two lines are parallel."

Given: $\quad \angle 2 \& \angle 8$ are supplementary
Prove: $\quad w \| x$

Proofs must be done on proof paper.

