\qquad

5.2.D2 Exponential Functions

* What is an exponential function?

An exponential function is a nonlinear function of the form $y=a b^{x}$, where $a \neq 0$, $b \neq 1$, and $b>0$. As the independent variable x changes by a constant amount, the dependent variable y is multiplied by a constant factor, which means consecutive y-values form a constant ratio.

* Writing Exponential Functions

For an exponential function of the form $y=a b^{x}$, the y-values change by a factor of b as x increases by 1 . You can use this fact to write an exponential function when you know the y-intercept, a. The table represents the exponential function
 $y=2(5)^{x}$.
$>$ EXIMPLE: The graph represents a bacterial population y after x days.

- Write an exponential function that represents the population after x days.
- Find the population after 5 days.

* Exponential Growth Functions

$>$ Exponential growth occurs when a quantity increases by the same factor over equal intervals of time.

A function of the form $y=a(1+r)^{t}$, where $a>0$ and $r>0$, is an exponential growth function.

EXIMPLE: The attendance of an annual music festival is 150,000. The attendance, A, increases by 8% each year.

- Write an exponential growth function that represents the attendance after t years.
- How many people will attend the festival in the fifth year?

* Exponential Decay Functions

$>$ Exponential decay occurs when a quantity decreases by the same factor over equal intervals of time.
A function of the form $y=a(1-r)^{t}$, where $a>0$ and $0<r<1$, is an exponential decay function.

For exponential decay, the value inside the parentheses is less than I because r is subtracted from l.

EXIMPLE: You purchase a car in 2010 for $\$ 25,000$. The value of the car decreases by 14% annually.

- Write an exponential decay function that represents the value of the car after t years.
- What is the value of the car in 2015?
$>$ EXIMPLE: Determine whether the table represents an exponential growth function, an exponential decay function, or neither. If exponential, write an equation of the form $y=a(b)^{x}$.
a.

\boldsymbol{x}	\boldsymbol{y}
0	270
1	90
2	30
3	10

b.

\boldsymbol{x}	0	1	2	3
\boldsymbol{y}	5	10	20	40

EXIMPLE: Determine whether each function represents exponential growth or exponential decay. Identify a, the initial value, b the growth factor or decay factor, and r, the percent rate of change.

- $y=5(1.07)^{t}$
- $f(t)=0.2(0.98)^{t}$

