MODELING WITH LINEAR FUNCTIONS

	Principal ×	Rate ×	Time	= Interest
Investment 1				
Investment 2				

Investment Problems (Simple interest: $P \times r \times t = I$)

One the table is completed, the final column is useful in writing an equation about the interest earned in the overall investment.

<u>Uniform Motion Problems</u> $(r \times t = d)$

	Rate ×	Time	= Distance
Vehicle 1			
Vehicle 2			

One the table is filled in, a sketch of the motion involved leads to an understanding of the relationship between various distances. Entries in the final column are useful in terms of the equation.

Typical situations include the following:

• *A* and *B* move in opposite directions starting from the same point:

A's distance	B's distance	
(Starting	
	point	

The distance traveled by A added to the distance traveled by B is <u>*equal*</u> *to the distance that A and B are apart.*

• *A* and *B* move in the same direction starting from different points:

	A's distance	B's distance	
Starting			Starting
point			point
for A			for B

The distance traveled by A added to the distance traveled by B is <u>equal</u> to the distance that A and B were originally apart.

• Roundtrips:

A's distance on outgoing trip Starting point A's distance on return trip

The distance on the outgoing trip is <u>equal</u> to the distance on the return trip.

• *A* and *B* leave from the same point at different times:

At the instant that A overtakes B (or vice versa) the distance traveled by A is <u>equal</u> to the distance traveled by B.

MODELING WITH LINEAR FUNCTIONS

<u>Mixtures</u>

	Total	Percentage of	= Amount of
	Amount ×	a Substance	the Substance
Solution A			
Solution B			
Mixture of			
A & B			

Once the table is completed, the final column is useful in writing equations.

An implied English sentence is that the sum of the substances in solutions A and B is equal to the amount of the substance in the mixture.