10.2 Lesson

Core Vocabulary

central angle, p. 542
minor arc, p. 542
major arc, p. 542
semicircle, p. 542
measure of a minor arc, p. 542
measure of a major arc, p. 542
adjacent arcs, p. 543
congruent circles, p. 544
congruent arcs, p. 544
similar arcs, p. 545

STUDY TIP

The measure of a minor arc is less than 180°. The measure of a major arc is greater than 180°.

What You Will Learn

Find arc measures.

- Identify congruent arcs.

Prove circles are similar.

Finding Arc Measures

A central angle of a circle is an angle whose vertex is the center of the circle. In the diagram, $\angle A C B$ is a central angle of $\odot C$.

If $m \angle A C B$ is less than 180°, then the points on $\odot C$ that lie in the interior of $\angle A C B$ form a minor arc with endpoints A and B. The points on $\odot C$ that do not lie on the minor arc $A B$ form a major arc with endpoints A and B. A semicircle is an arc with endpoints that are the endpoints of a diameter.

major arc $A D B$

Minor arcs are named by their endpoints. The minor arc associated with $\angle A C B$ is named $\overparen{A B}$. Major arcs and semicircles are named by their endpoints and a point on the arc. The major arc associated with $\angle A C B$ can be named $\widehat{A D B}$.

G) Core Concept

Measuring Arcs

The measure of a minor arc is the measure of its central angle. The expression $m \overparen{A B}$ is read as "the measure of arc $A B$."

The measure of the entire circle is 360°. The measure of a major arc is the difference of 360° and the measure of the related minor arc. The measure of a semicircle is 180°.

$m \widehat{A D B}=360^{\circ}-50^{\circ}=310^{\circ}$

EXAMPLE 1 Finding Measures of Arcs

Find the measure of each arc of $\odot P$, where $\overline{R T}$ is a diameter.
a. $\overparen{R S}$
b. $\overparen{R T S}$
c. $\overparen{R S T}$

SOLUTION

a. $\overparen{R S}$ is a minor arc, so $m \overparen{R S}=m \angle R P S=110^{\circ}$.
b. $\overparen{R T S}$ is a major arc, so $m \widehat{R T S}=360^{\circ}-110^{\circ}=250^{\circ}$.
c. $\overline{R T}$ is a diameter, so $\overparen{R S T}$ is a semicircle, and $m \overparen{R S T}=180^{\circ}$.

Two arcs of the same circle are adjacent arcs when they intersect at exactly one point. You can add the measures of two adjacent arcs.

Postulate

Postulate 10.1 Arc Addition Postulate

The measure of an arc formed by two adjacent arcs is the sum of the measures of the two arcs.

EXAMPLE 2 Using the Arc Addition Postulate

Find the measure of each arc.
a. $\overparen{G E}$
b. $\widehat{G E F}$
c. $\overparen{G F}$

SOLUTION

a. $m \widehat{G E}=m \widehat{G H}+m \overparen{H E}=40^{\circ}+80^{\circ}=120^{\circ}$
b. $m \widehat{G E F}=m \widehat{G E}+m \overparen{E F}=120^{\circ}+110^{\circ}=230^{\circ}$

c. $m \widehat{G F}=360^{\circ}-m \widehat{G E F}=360^{\circ}-230^{\circ}=130^{\circ}$

EXAMPLE 3 Finding Measures of Arcs

A recent survey asked teenagers whether they would rather meet a famous musician, athlete, actor, inventor, or other person. The circle graph shows the results. Find the indicated arc measures.
a. $m \overparen{A C}$
b. $m \overparen{A C D}$
c. $m \widehat{A D C}$
d. $m \widehat{E B D}$

SOLUTION

a. $m \overparen{A C}=m \overparen{A B}+m \overparen{B C}$

$$
=29^{\circ}+108^{\circ}
$$

$$
=137^{\circ}
$$

b. $m \overparen{A C D}=m \overparen{A C}+m \overparen{C D}$

$$
=137^{\circ}+83^{\circ}
$$

$$
=220^{\circ}
$$

c. $m \widehat{A D C}=360^{\circ}-m \overparen{A C}$
$=360^{\circ}-137^{\circ}$

$$
=223^{\circ}
$$

d. $m \widehat{E B D}=360^{\circ}-m \widehat{E D}$
$=360^{\circ}-61^{\circ}$
$=299^{\circ}$

Monitoring Progress

Identify the given arc as a major arc, minor arc, or semicircle. Then find the measure of the arc.

1. $\overparen{T Q}$
2. $\overparen{Q R T}$
3. $\overparen{T Q R}$
4. $\overparen{Q S}$
5. $\overparen{T S}$
6. $\overparen{R S T}$

