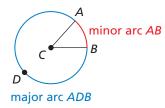
10.2 Lesson

Core Vocabulary

central angle, p. 542 minor arc, p. 542 major arc, p. 542 semicircle, p. 542 measure of a minor arc, p. 542 measure of a major arc, p. 542 adjacent arcs, p. 543 congruent circles, p. 544 congruent arcs, p. 545


What You Will Learn

- Find arc measures.
- Identify congruent arcs.
- Prove circles are similar.

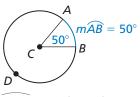
Finding Arc Measures

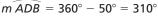
A **central angle** of a circle is an angle whose vertex is the center of the circle. In the diagram, $\angle ACB$ is a central angle of $\bigcirc C$.

If $m \angle ACB$ is less than 180°, then the points on $\bigcirc C$ that lie in the interior of $\angle ACB$ form a **minor arc** with endpoints *A* and *B*. The points on $\bigcirc C$ that do not lie on the minor arc *AB* form a **major arc** with endpoints *A* and *B*. A **semicircle** is an arc with endpoints that are the endpoints of a diameter.

Minor arcs are named by their endpoints. The minor arc associated with $\angle ACB$ is named \widehat{AB} . Major arcs and semicircles are named by their endpoints and a point on the arc. The major arc associated with $\angle ACB$ can be named \widehat{ADB} .

STUDY TIP

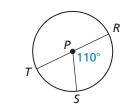

The measure of a minor arc is less than 180°. The measure of a major arc is greater than 180°.


🔄 Core Concept

Measuring Arcs

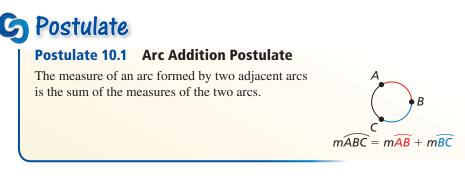
The **measure of a minor arc** is the measure of its central angle. The expression \widehat{mAB} is read as "the measure of arc AB."

The measure of the entire circle is 360°. The **measure of a major arc** is the difference of 360° and the measure of the related minor arc. The measure of a semicircle is 180°.

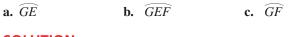

EXAMPLE 1

Finding Measures of Arcs

Find the measure of each arc of $\bigcirc P$, where \overline{RT} is a diameter.


- **b.** \widehat{RTS}
- c. \widehat{RST}

SOLUTION


- **a.** \widehat{RS} is a minor arc, so $\widehat{mRS} = m \angle RPS = 110^\circ$.
- **b.** \widehat{RTS} is a major arc, so $\widehat{mRTS} = 360^\circ 110^\circ = 250^\circ$.
- **c.** \overline{RT} is a diameter, so \widehat{RST} is a semicircle, and $\widehat{mRST} = 180^{\circ}$.

Two arcs of the same circle are **adjacent arcs** when they intersect at exactly one point. You can add the measures of two adjacent arcs.

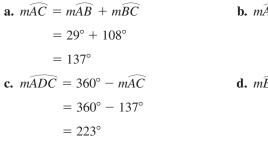
EXAMPLE 2 Using the Arc Addition Postulate

Find the measure of each arc.

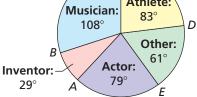
SOLUTION

- **a.** $\widehat{mGE} = \widehat{mGH} + \widehat{mHE} = 40^\circ + 80^\circ = 120^\circ$
- **b.** $\widehat{mGEF} = \widehat{mGE} + \widehat{mEF} = 120^\circ + 110^\circ = 230^\circ$
- **c.** $\widehat{mGF} = 360^{\circ} \widehat{mGEF} = 360^{\circ} 230^{\circ} = 130^{\circ}$

G H 40° H 80° 110° F

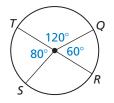

EXAMPLE 3

Finding Measures of Arcs


A recent survey asked teenagers whether they would rather meet a famous musician, athlete, actor, inventor, or other person. The circle graph shows the results. Find the indicated arc measures.

a. \widehat{mAC}	b.	mACD
c. $m\widehat{ADC}$	d.	mEBD

SOLUTION



b.
$$\widehat{mACD} = \widehat{mAC} + \widehat{mCD}$$

 $= 137^{\circ} + 83^{\circ}$
 $= 220^{\circ}$
d. $\widehat{mEBD} = 360^{\circ} - \widehat{mED}$
 $= 360^{\circ} - 61^{\circ}$
 $= 299^{\circ}$

Monitoring Progress

Identify the given arc as a *major arc*, *minor arc*, or *semicircle*. Then find the measure of the arc.

1. \widehat{TQ}	2. \widehat{QRT}	$3. \ \widehat{TQR}$
$4. \ \widehat{QS}$	5. \widehat{TS}	6. <i>RST</i>

