Using Properties of Tangents

Theorems

Theorem 10.1 Tangent Line to Circle Theorem

In a plane, a line is tangent to a circle if and only if the line is perpendicular to a radius of the circle at its endpoint on the circle.

Proof Ex. 47, p. 540

Line m is tangent to $\odot Q$ if and only if $m \perp \overline{Q P}$.

Theorem 10.2 External Tangent Congruence Theorem
Tangent segments from a common external point are congruent.

Proof Ex. 46, p. 540
If $\overline{S R}$ and $\overline{S T}$ are tangent segments, then $\overline{S R} \cong \overline{S T}$.

EXAMPLE 3 Verifying a Tangent to a Circle

Is $\overline{S T}$ tangent to $\odot P$?

SOLUTION

Use the Converse of the Pythagorean Theorem (Theorem 9.2). Because $12^{2}+35^{2}=37^{2}$, $\triangle P T S$ is a right triangle and $\overline{S T} \perp \overline{P T}$. So, $\overline{S T}$ is perpendicular to a radius of $\odot P$ at its endpoint on $\odot P$.

By the Tangent Line to Circle Theorem, $\overline{S T}$ is tangent to $\odot P$.

EXAMPLE 4 Finding the Radius of a Circle

In the diagram, point B is a point of tangency. Find the radius r of $\odot C$.

SOLUTION

You know from the Tangent Line to Circle Theorem that $\overline{A B} \perp \overline{B C}$, so $\triangle A B C$ is a right triangle. You can use the Pythagorean Theorem (Theorem 9.1).

$$
\begin{aligned}
A C^{2} & =B C^{2}+A B^{2} & & \text { Pythagorean Theorem } \\
(r+50)^{2} & =r^{2}+80^{2} & & \text { Substitute. } \\
r^{2}+100 r+2500 & =r^{2}+6400 & & \text { Multiply. } \\
100 r & =3900 & & \text { Subtract } r^{2} \text { and } 2500 \text { from each side. } \\
r & =39 & & \text { Divide each side by } 100 .
\end{aligned}
$$

The radius is 39 feet.

CONSTRUCTION

Given $\odot C$ and point A, construct a line tangent to $\odot C$ that passes through A. Use a compass and straightedge.

SOLUTION

Step 1

Find a midpoint
Draw $\overline{A C}$. Construct the bisector of the segment and label the midpoint M.

Step 2

Draw a circle
Construct $\odot M$ with radius $M A$. Label one of the points where $\odot M$ intersects $\odot C$ as point B.

Step 3

Construct a tangent line Draw $\overleftrightarrow{A B}$. It is a tangent to $\odot C$ that passes through A.

EXAMPLE 5 Using Properties of Tangents

$\overline{R S}$ is tangent to $\odot C$ at S, and $\overline{R T}$ is tangent to $\odot C$ at T. Find the value of x.

SOLUTION

$$
\begin{aligned}
R S & =R T \\
28 & =3 x+4 \\
8 & =x
\end{aligned}
$$

External Tangent Congruence Theorem
Substitute.
Solve for x.

The value of x is 8 .

Monitoring Progress

 Help in English and Spanish at BigldeasMath.com6. Is $\overline{D E}$ tangent to $\odot C$?
7. $\overline{S T}$ is tangent to $\odot Q$. Find the radius of $\odot Q$.
8. Points M and N are points of tangency. Find the value(s) of x.

