Using Properties of Tangents

G Theorems

Theorem 10.1 Tangent Line to Circle Theorem

In a plane, a line is tangent to a circle if and only if the line is perpendicular to a radius of the circle at its endpoint on the circle.

Proof Ex. 47, p. 540

Line *m* is tangent to $\bigcirc Q$ if and only if $m \perp \overline{QP}$.

Theorem 10.2 External Tangent Congruence Theorem

Tangent segments from a common external point are congruent.

If \overline{SR} and \overline{ST} are tangent segments, then $\overline{SR} \cong \overline{ST}$.

Proof Ex. 46, p. 540

Verifying a Tangent to a Circle

Is \overline{ST} tangent to $\bigcirc P$?

SOLUTION

Use the Converse of the Pythagorean Theorem (Theorem 9.2). Because $12^2 + 35^2 = 37^2$, $\triangle PTS$ is a right triangle and $\overline{ST} \perp \overline{PT}$. So, \overline{ST} is perpendicular to a radius of $\bigcirc P$ at its endpoint on $\bigcirc P$.

By the Tangent Line to Circle Theorem, \overline{ST} is tangent to $\bigcirc P$.

EXAMPLE 4

Finding the Radius of a Circle

In the diagram, point *B* is a point of tangency. Find the radius *r* of $\bigcirc C$.

A 50 ft r C 80 ft B

SOLUTION

You know from the Tangent Line to Circle Theorem that $\overline{AB} \perp \overline{BC}$, so $\triangle ABC$ is a right triangle. You can use the Pythagorean Theorem (Theorem 9.1).

$AC^2 = BC^2 + AB^2$	Pythagorean Theorem
$(r+50)^2 = r^2 + 80^2$	Substitute.
$r^2 + 100r + 2500 = r^2 + 6400$	Multiply.
100r = 3900	Subtract r^2 and 2500 from each side.
r = 39	Divide each side by 100.

The radius is 39 feet.

Constructing a Tangent to a Circle

Given $\bigcirc C$ and point *A*, construct a line tangent to $\bigcirc C$ that passes through *A*. Use a compass and straightedge.

CONSTRUCTION

SOLUTION

Step 1 $C \longrightarrow A$

Find a midpoint Draw \overline{AC} . Construct the bisector of the segment and label the midpoint M.

Draw a circle Construct $\bigcirc M$ with radius *MA*. Label one of the points where $\bigcirc M$ intersects $\bigcirc C$ as point *B*.

Construct a tangent line Draw \overrightarrow{AB} . It is a tangent to $\bigcirc C$ that passes through A.

EXAMPLE 5

Using Properties of Tangents

 \overline{RS} is tangent to $\odot C$ at *S*, and \overline{RT} is tangent to $\odot C$ at *T*. Find the value of *x*.

SOLUTION

RS = RT	External Tangent Congruence Theorem
28 = 3x + 4	Substitute.
8 = x	Solve for <i>x</i> .
The value of	<i>x</i> is 8.

Monitoring Progress

Help in English and Spanish at BigldeasMath.com

6. Is \overline{DE} tangent to $\bigcirc C$?

7. \overline{ST} is tangent to $\bigcirc Q$. Find the radius of $\bigcirc Q$. 8. Points *M* and *N* are points of tangency.Find the value(s) of *x*.

