10.5 Lesson

Core Vocabulary

circumscribed angle, p. 568

Previous tangent chord secant

What You Will Learn

Find angle and arc measures.

• Use circumscribed angles.

Finding Angle and Arc Measures

S Theorem

Theorem 10.14 Tangent and Intersected Chord Theorem

If a tangent and a chord intersect at a point on a circle, then the measure of each angle formed is one-half the measure of its intercepted arc.

Proof Ex. 33, p. 572

Finding Angle and Arc Measures

Line *m* is tangent to the circle. Find the measure of the red angle or arc.

SOLUTION

a.

a. $m \angle 1 = \frac{1}{2}(130^\circ) = 65^\circ$

b. $m\overline{KJL} = 2(125^{\circ}) = 250^{\circ}$

Monitoring Progress Help in English and Spanish at BigldeasMath.com

Line m is tangent to the circle. Find the indicated measure.

G Core Concept

Intersecting Lines and Circles

If two nonparallel lines intersect a circle, there are three places where the lines can intersect.

on the circle

outside the circle

S Theorems

Theorem 10.15 Angles Inside the Circle Theorem

If two chords intersect *inside* a circle, then the measure of each angle is one-half the *sum* of the measures of the arcs intercepted by the angle and its vertical angle.

 $m \angle 2 = \frac{1}{2}(m\widehat{AD} + m\widehat{BC})$

Proof Ex. 35, p. 572

Theorem 10.16 Angles Outside the Circle Theorem

If a tangent and a secant, two tangents, or two secants intersect *outside* a circle, then the measure of the angle formed is one-half the *difference* of the measures of the intercepted arcs.

Finding an Angle Measure

Find the value of *x*.

SOLUTION

a. The chords \overline{JL} and \overline{KM} intersect inside the circle. Use the Angles Inside the Circle Theorem.

$$x^{\circ} = \frac{1}{2}(\widehat{mJM} + \widehat{mLK})$$
$$x^{\circ} = \frac{1}{2}(130^{\circ} + 156^{\circ})$$
$$x = 143$$

So, the value of x is 143.

Monitoring Progress

Find the value of the variable.

b. The tangent \overrightarrow{CD} and the secant \overrightarrow{CB} intersect outside the circle. Use the Angles Outside the Circle Theorem.

$$m \angle BCD = \frac{1}{2}(m\widehat{AD} - m\widehat{BD})$$
$$x^{\circ} = \frac{1}{2}(178^{\circ} - 76^{\circ})$$
$$x = 51$$

So, the value of x is 51.

 $^{\prime\prime}$ Help in English and Spanish at BigldeasMath.com

Using Circumscribed Angles

S Core Concept

Circumscribed Angle

A **circumscribed angle** is an angle whose sides are tangent to a circle.

G Theorem

Theorem 10.17 Circumscribed Angle Theorem

The measure of a circumscribed angle is equal to 180° minus the measure of the central angle that intercepts the same arc.

Proof Ex. 38, p. 572

$m \angle ADB = 180^{\circ} - m \angle ACB$

EXAMPLE 3

Finding Angle Measures

Find the value of *x*.

SOLUTION

a. By definition, $\widehat{mAB} = \underline{m}\angle ACB = 135^\circ$. Use the Circumscribed Angle Theorem to find $\underline{m}\angle ADB$.

$m \angle ADB = 180^{\circ} - m \angle ACB$
$x^{\circ} = 180^{\circ} - 135^{\circ}$
x = 45

Circumscribed Angle Theorem
Substitute.
Subtract.

So, the value of x is 45.

b. Use the Measure of an Inscribed Angle Theorem (Theorem 10.10) and the Circumscribed Angle Theorem to find $m \angle EJF$.

$m \angle EJF = \frac{1}{2}m\widehat{EF}$	Measure of an Inscribed Angle Theorem		
$m \angle EJF = \frac{1}{2}m \angle EGF$	Definition of minor arc		
$m\angle EJF = \frac{1}{2}(180^\circ - m\angle EHF)$	Circumscribed Angle Theorem		
$m\angle EJF = \frac{1}{2}(180^\circ - 30^\circ)$	Substitute.		
$x = \frac{1}{2}(180 - 30)$	Substitute.		
x = 75	Simplify.		
So, the value of x is 75.			

568 Chapter 10 Circles