10.5 Lesson

Core Vocabulary

circumscribed angle, p. 568

Previous

tangent
chord
secant

What You Will Learn

Find angle and arc measures.

- Use circumscribed angles.

Finding Angle and Arc Measures

Theorem

Theorem 10.14 Tangent and Intersected Chord Theorem

If a tangent and a chord intersect at a point on a circle, then the measure of each angle formed is one-half the measure of its intercepted arc.

Proof Ex. 33, p. 572
$m \angle 1=\frac{1}{2} m \overparen{A B} \quad m \angle 2=\frac{1}{2} m \overparen{B C A}$

EXAMPLE 1 Finding Angle and Arc Measures

Line m is tangent to the circle. Find the measure of the red angle or arc.
a.

b.

SOLUTION

a. $m \angle 1=\frac{1}{2}\left(130^{\circ}\right)=65^{\circ}$
b. $m \widehat{K J L}=2\left(125^{\circ}\right)=250^{\circ}$

Monitoring Progress Help in English and Spanish at BigIdeasMath.com

Line \boldsymbol{m} is tangent to the circle. Find the indicated measure.

1. $m \angle 1$

2. $m \overparen{R S T}$

3. $m \overparen{X Y}$

G) Core Concept

Intersecting Lines and Circles

If two nonparallel lines intersect a circle, there are three places where the lines can intersect.

G) Theorems

Theorem 10.15 Angles Inside the Circle Theorem

If two chords intersect inside a circle, then the measure of each angle is one-half the sum of the measures of the arcs intercepted by the angle and its vertical angle.

Proof Ex. 35, p. 572

$$
\begin{aligned}
& m \angle 1=\frac{1}{2}(m \overparen{D C}+m \overparen{A B}) \\
& m \angle 2=\frac{1}{2}(m \overparen{A D}+m \overparen{B C})
\end{aligned}
$$

Theorem 10.16 Angles Outside the Circle Theorem

If a tangent and a secant, two tangents, or two secants intersect outside a circle, then the measure of the angle formed is one-half the difference of the measures of the intercepted arcs.

$m \angle 1=\frac{1}{2}(m \overparen{B C}-m \overparen{A C}) \quad m \angle 2=\frac{1}{2}(m \overparen{P Q R}-m \overparen{P R}) \quad m \angle 3=\frac{1}{2}(m \overparen{X Y}-m \overparen{W Z})$
Proof Ex. 37, p. 572

EXAMPLE 2 Finding an Angle Measure

Find the value of x.
a.

b.

SOLUTION

a. The chords $\overline{J L}$ and $\overline{K M}$ intersect inside the circle. Use the Angles Inside the Circle Theorem.

$$
\begin{aligned}
x^{\circ} & =\frac{1}{2}(m \overparen{J M}+m \overparen{L K}) \\
x^{\circ} & =\frac{1}{2}\left(130^{\circ}+156^{\circ}\right) \\
x & =143
\end{aligned}
$$

So, the value of x is 143 .
b. The tangent $\overrightarrow{C D}$ and the secant $\overrightarrow{C B}$ intersect outside the circle. Use the Angles Outside the Circle Theorem.

$$
\begin{aligned}
m \angle B C D & =\frac{1}{2}(m \overparen{A D}-m \widehat{B D}) \\
x^{\circ} & =\frac{1}{2}\left(178^{\circ}-76^{\circ}\right) \\
x & =51
\end{aligned}
$$

So, the value of x is 51 .

Monitoring Progress

 Help in English and Spanish at BigldeasMath.comFind the value of the variable.
4.

5.

Using Circumscribed Angles
 G) Core Concept

Circumscribed Angle

A circumscribed angle is an angle whose sides are tangent to a circle.

5 Theorem

Theorem 10.17 Circumscribed Angle Theorem

The measure of a circumscribed angle is equal to 180° minus the measure of the central angle that intercepts the same arc.

Proof Ex. 38, p. 572

$$
m \angle A D B=180^{\circ}-m \angle A C B
$$

EXAMPLE 3 Finding Angle Measures

Find the value of x.
a.

b.

SOLUTION

a. By definition, $m \overparen{A B}=m \angle A C B=135^{\circ}$. Use the Circumscribed Angle Theorem to find $m \angle A D B$.

$$
\begin{aligned}
m \angle A D B & =180^{\circ}-m \angle A C B & & \text { Circumscribed Angle Theorem } \\
x^{\circ} & =180^{\circ}-135^{\circ} & & \text { Substitute. } \\
x & =45 & & \text { Subtract. }
\end{aligned}
$$

So, the value of x is 45 .
b. Use the Measure of an Inscribed Angle Theorem (Theorem 10.10) and the Circumscribed Angle Theorem to find $m \angle E J F$.

$$
\begin{array}{ll}
m \angle E J F=\frac{1}{2} m \overparen{E F} & \text { Measure of } \\
m \angle E J F=\frac{1}{2} m \angle E G F & \text { Definition ot } \\
m \angle E J F=\frac{1}{2}\left(180^{\circ}-m \angle E H F\right) & \\
\text { Circumscrib } \\
m \angle E J F=\frac{1}{2}\left(180^{\circ}-30^{\circ}\right) & \\
\text { Substitute. }
\end{array}
$$

$$
m \angle E J F=\frac{1}{2} m \angle E G F \quad \text { Definition of minor arc }
$$

$$
m \angle E J F=\frac{1}{2}\left(180^{\circ}-m \angle E H F\right) \quad \text { Circumscribed Angle Theorem }
$$

$$
x=\frac{1}{2}(180-30) \quad \text { Substitute. }
$$

$$
x=75 \quad \text { Simplify. }
$$

So, the value of x is 75 .

