10.6 Lesson

Core Vocabulary

segments of a chord, p. 574
tangent segment, p. 575
secant segment, p. 575
external segment, p. 575

What You Will Learn

Use segments of chords, tangents, and secants.

Using Segments of Chords, Tangents, and Secants

When two chords intersect in the interior of a circle, each chord is divided into two segments that are called segments of the chord.

Theorem

Theorem 10.18 Segments of Chords Theorem

If two chords intersect in the interior of a circle, then the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments of the other chord.

Proof Ex. 19, p. 578
$E A \cdot E B=E C \cdot E D$

EXAMPLE 1 Using Segments of Chords

Find $M L$ and $J K$.

SOLUTION

$$
\begin{aligned}
N K \cdot N J & =N L \cdot N M \\
x \cdot(x+4) & =(x+1) \cdot(x+2) \\
x^{2}+4 x & =x^{2}+3 x+2 \\
4 x & =3 x+2 \\
x & =2
\end{aligned}
$$

Segments of Chords Theorem
Substitute.
Simplify.
Subtract x^{2} from each side.
Subtract $3 x$ from each side.
Find $M L$ and $J K$ by substitution.

$$
\begin{aligned}
M L & =(x+2)+(x+1) & J K & =x+(x+4) \\
& =2+2+2+1 & & =2+2+4 \\
& =7 & & =8
\end{aligned}
$$

So, $M L=7$ and $J K=8$.

Monitoring Progress Help in English and Spanish at BigldeasMath.com

Find the value of x.
1.

2.

G) Core Concept

Tangent Segment and Secant Segment

A tangent segment is a segment that is tangent to a circle at an endpoint. A secant segment is a segment that contains a chord of a circle and has exactly one endpoint outside the circle. The part of a secant segment that is outside the circle is called an external segment.

$\overline{P S}$ is a tangent segment.
$\overline{P R}$ is a secant segment.
$\overline{P Q}$ is the external segment of $\overline{P R}$.

G Theorem

Theorem 10.19 Segments of Secants Theorem

If two secant segments share the same endpoint outside a circle, then the product of the lengths of one secant segment and its external segment equals the product of the lengths of the other secant segment and its external segment.

Proof Ex. 20, p. 578

$E A \cdot E B=E C \cdot E D$

EXAMPLE 2 Using Segments of Secants

Find the value of x.

SOLUTION

$$
\begin{aligned}
R P \cdot R Q & =R S \cdot R T \\
9 \cdot(11+9) & =10 \cdot(x+10) \\
180 & =10 x+100 \\
80 & =10 x \\
8 & =x
\end{aligned}
$$

Segments of Secants Theorem
Substitute.
Simplify.
Subtract 100 from each side.
Divide each side by 10 .

The value of x is 8 .

Monitoring Progress

Find the value of x.
3.

4.

G Theorem

Theorem 10.20 Segments of Secants and Tangents Theorem

If a secant segment and a tangent segment share an endpoint outside a circle, then the product of the lengths of the secant segment and its external segment equals the square of the length of the tangent segment.

Proof Exs. 21 and 22, p. 578

$$
E A^{2}=E C \cdot E D
$$

EXAMPLE 3 Using Segments of Secants and Tangents

Find $R S$.

SOLUTION

$$
\begin{array}{rlrl}
R Q^{2} & =R S \cdot R T & & \begin{array}{l}
\text { Segments of Secants } \\
16^{2}
\end{array}=x \cdot(x+8) \\
& & \text { and Tangents Theorem } \\
256 & =x^{2}+8 x & & \text { Substitute. } \\
0 & =x^{2}+8 x-256 & & \text { Simplify. } \\
x & =\frac{-8 \pm \sqrt{8^{2}-4(1)(-256)}}{2(1)} & & \text { Use Quadratic Formula. } \\
x & =-4 \pm 4 \sqrt{17} & & \text { Simplify. }
\end{array}
$$

ANOTHER WAY

In Example 3, you can draw segments $\overline{Q S}$ and $\overline{Q T}$.

Because $\angle R Q S$ and $\angle R T Q$ intercept the same arc, they are congruent. By the Reflexive Property of Congruence (Theorem 2.2), $\angle Q R S \cong \angle T R Q$. So, $\triangle R S Q \sim \triangle R Q T$ by the AA Similarity Theorem (Theorem 8.3). You can use this fact to write and solve a proportion to find x.

