5.1 Classifying Triangles on the Coordinate Plane

Bell Work:

The coordinates of 2 points are given.
Where could a third point be placed to create a
right triangle? At (-6, some number other than -10) or (4, some number other than -10)

Triangles can be classified either by the lengths of their sides or the measures of their angles.

Sides:
equilateral
the lengths of all 3 sides are the same

the lengths of at least 2 sides are the same

Note: an equilateral triangle is also an isosceles triangle

1 angle measures 90° and the other 2 are acute, measuring less than 90°

obtuse

1 angle measures more than 90° and the other 2
are acute, measuring

1. a. Given triangle $A B C$ with $A(0,5), B(0,-5)$, and $C(-3,3)$ classify the triangle as equilateral, isosceles, or scalene.
Plot the points on the graph and connect the points to form a triangle.
Length $\mathrm{AB}=10$
Length $B C=\sqrt{4-3-0^{-2}+3+5^{-2}}=\sqrt{9+64}=\sqrt{73} \approx 8.54$
Length $A C=\sqrt{43-0^{-2}+3-5^{-2}}=\sqrt{9+4}=\sqrt{13} \approx 3.61$
Triangle $A B C$ is $a(n)$ scalene triangle.

b. Prove triangle $A B C$ is a right triangle. Triangle $A B C$ "look like" a right triangle.

Hint: Triangle $A B C$ is a right triangle if it has a right angle. If two of its sides are perpendicular then they form a right angle. If the slopes of two sides of the triangle are opposite reciprocals then the sides are perpendicular.
Slope $A B=\frac{-5-5}{0-0}=\frac{-10}{0}=$ undefined \quad Slope $B C=\frac{3+5}{-3-0}=\frac{8}{-3}=-\frac{8}{3}$
Slope AC $=\frac{3-5}{-3-0}=\frac{-2}{-3}=\frac{2}{3}$
There are no opposite reciprocals among the slopes so there are no perpendicular segments and thus no right angles.
$\angle A B C$ is not a right angle therefore triangle $A B C$ is not a right triangle.
c. Prove triangle $A B C$ is a right triangle. (alternate method)

A triangle is a right triangle if the lengths of the 3 sides work in the Pythagorean Theorem, $a^{2}+b^{2}=c^{2}$ where a is the shortest side and c is the longest side. Use your side lengths from (a) to determine whether triangle $A B C$ is a right triangle.
$A C$ is the shortest side so it would be a in the formula. $C B$ is the medium side so it would be b in the formula. $A B$ is the longest side so it would be c in the formula.
$3.61^{2}+8.54^{2}$ equals? 10^{2}
$13+73$ equals 100
86 is not equal to 100
Triangle ABC is not a right triangle.
Practice:
2. Given triangle $A B C$ with $A(-1,2), B(4,2)$, and $C(3,-1)$ classify the triangle as equilateral, isosceles, or scalene.
Is triangle ABC a right triangle? You may use which ever method you prefer. If it is not a right triangle do you think it is acute or obtuse?
$A B=5$
$B C=\sqrt{3-4^{-2}+41-2^{-2}}=\sqrt{1+9}=\sqrt{10} \approx 3.16$
$A C=\sqrt{3+1^{-2}+41-2^{-2}}=\sqrt{16+9}=\sqrt{25} \approx 5$

Triangle ABC is isosceles.

$B C$ is the shortest side so it would be a in the formula and b and c would both be 5 .
$3.16^{2}+5^{2}$ is not equal to 5^{2} so the triangle is not a right triangle.
slope $A B=0$ (horizontal segment) slope $B C=\frac{-1-2}{3-4}=\frac{-3}{-1}=3$
slope $A C=\frac{-1-2}{3+1}=\frac{-3}{4}=-\frac{3}{4}$
None of the slopes are opposite reciprocals so there are no perpendiculars thus no right angles.

