ALWAYS LOOK FOR COMMON FACTORS FIRST!

* Faltoring Binomials

$>$ Difference of Two Squares: $a^{2}-b^{2}=(a+b)(a-b)$

- $a=\sqrt{a^{2}} \& b=\sqrt{b^{2}}$
$>$ Sum of Two Cubes: $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
$>$ Difference of Two Cubes $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
$a=\sqrt{a^{3}} \& b=\sqrt{b^{3}}$
$\mathbf{1}^{\mathbf{3}}=\mathbf{1}, \mathbf{2}^{\mathbf{3}}=\mathbf{8}, \mathbf{3}^{3}=\mathbf{2 7}, \mathbf{4}^{3}=\mathbf{6 4 , \mathbf { 5 } ^ { 3 } = \mathbf { 1 2 5 }}$

FACTORING TRINOMIALS: $x^{2}+b x+c$
> Find the factors of c that add up to be the middle term b
$>$ Write as a product of two binomials: $(x \pm \#)(x \pm \#)$

\star FACtoring Trinomials: $a x^{2}+b x+c$

THE BOX METHOD

1. Multiply the first and last terms: $a x^{2} \times c$
2. Find the factors that multiply to be the product (in step 1) and that add to be the middle term: $b x$

$$
\text { Organize this information with an X-box } \rightarrow
$$

3. Draw a 2×2 square

4. Put the first term of the trinomial $a x^{2}$ in the upper-left corner and the constant term, c, in the lower-right corner.
5. Put the factors (from step 2) in the two remaining squares.
6. Find the GCF of each row \& each column
7. Write the result as a product of two binomials.

* DEFOIL/A-C METHOD

> Multiply the first and last terms
$>$ Find the factors (of the product in step 1) that add up to be the middle termx
$>$ Replace the middle term with these factors
$>$ Factor by grouping

AN EXIMPLE: $3 x^{2}-4 x-7$

BOX METHOD		
$3 x^{2}$	$-7 x$	x
$3 x$	-7	1
$3 x$	-7	

$(3 x-7)(x+1)$

$1^{\text {st }} 2$ steps are the same

1. MULTIPLY THE FIRST \& LAST TERMS
2. FIND THE FACTORS IOF THE PRODUCT IN STEP 1) THAT ADD UP THE TO BE THE MIDDLE TERM

DEFOIL/A-C METHOD
3. REPLACE THE MIDDLE TERM WITH THESE FACTORS
4. FACTOR BY GROUPING

$$
\begin{gathered}
3 x^{2}-7 x+3 x-7 \\
\left(3 x^{2}-7 x\right)(+3 x-7) \\
x(3 x-7)+1(3 x-7) \\
(3 x-7)(x+1)
\end{gathered}
$$

Quadratic Form: $x^{4}+b x^{2}+c$ OR $a x^{4}+b x^{2}+c$
$>$ If you recognize how the expression factors in its original form, then do so.
$>$ If $a \neq 1$, use the box method or the defoil/a-c method.

- Example:

$$
\begin{array}{c|l}
x^{4}-7 x^{2}-18 \\
-18 & \\
\begin{array}{c|c}
-9 \& 2 & -7
\end{array} & \text { Find the factors of } c \text { that add up to be the middle term } b \\
\left(x^{2}-9\right)\left(x^{2}+2\right) & \text { Write as a product of two binomials } \\
(x+3)(x-3)\left(x^{2}+2\right) & \begin{array}{l}
\text { Be on the lookout for a difference of two squares; the expression can be } \\
\text { factored further. }
\end{array}
\end{array}
$$

SOBVATG QUADRARGC EQUARIOMS

$>$ Factoring \& the Zero Product Property

- Set the equation - written in standard form - equal to o
- $a x^{2}+b x+c=0$

THESE METHODS CAN BE USED TO FIND THE ZEROS/ROOTS/ X-INTERCEPTS OF QUADRATIC AND POLYNOMIAL FUNCTIONS!

- Factor
- Use the Zero-Product Property:
- Let a and b be real numbers. If $a b=0$, then $a=0$ or $b=0$.
- Set each factor equal to o and solve.
> Square Root Property
- Given $a x^{2}+c=0$
- Isolate the quadratic expression on one side of the equation

$$
\begin{aligned}
& x^{2}=4 \\
& \sqrt{x^{2}}= \pm \sqrt{4} \\
& x= \pm 2 \\
& \{-2,2\} \\
& \begin{aligned}
(x-5)^{2} & =9 \\
x-5 & = \pm \sqrt{9} \\
x-5 & = \pm 3 \\
x & =5 \pm 3 \\
x & =8 \text { or } x=2
\end{aligned}
\end{aligned}
$$

- Solve for x and simplify.
- Given: $a x^{2}+b x+c=0$
- The solutions of the quadratic equation $a x^{2}+b x+c=0$ are

$$
a x^{2}+b x+c=0 \rightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

where $a \neq 0$ and $b^{2}-4 a c \geq 0$

