EXPONENTIAL, LOGISTIC & LOGARITHMIC FUNCTIONS Formula Sheet

Properties of Exponents		Properties of Logarithms	
$a^0 = 1$	$a^m \bullet a^n = a^{mn}$	$\log_b 1 = 0$	$\log_b b = 1$
$(a^m)^n = a^m$	$(ab)^m = a^m b^m$	$b^{\log_b x} = x$	$\log_b b^y = y$
$a^{-m} = \frac{1}{a^m}$	$\frac{a^m}{a^n} = a^{m-n} \qquad \left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$	$If \ 0 < b \neq 1, \ 0 < a \neq 1, \ \&$ $y = \log_b x$	$a^{x} x, R, S, >0, then:$ $a^{x} \Leftrightarrow b^{y} = x$

$\sqrt[n]{x^m}$	$=x^{m/n}$
	$\sqrt[n]{x^m}$

Exponential Functions	Logistic Functions	
$f(x) = a \cdot b^x = a \cdot e^{kx}$	$f(x) = \frac{1}{1 + e^{-x}}$	
Growth Decay	Logistic Growth Functions	
b > 1 or k > 0 $b < 1 or k < 0$	$f(x) = \frac{c}{1 + a \cdot b^x} \qquad f(x) = \frac{c}{1 + a \cdot e^{-kx}}$	
a is always positive in growth/decay functions	Decay: if $b > 1$ or $k < 0$	

Basic Properties of Common Logarithms		Basic Properties of Natural Logarithms	
base 10: $y = \log x$ iff $10^{y} = x$		base e: $y = \ln x$ iff $e^y = x$	
Let <i>x</i> & <i>y</i> be real numbers with $x > 0$:		Let <i>x</i> & <i>y</i> be real numbers with $x > 0$:	
$\log 1 = 0 \qquad \qquad$	og 10 = 1	$\ln 1 = 0$	$\ln e = 1$
$\log 10^{y}$ 1	$0^{\log x} = x$	$\ln e^{y} = y$	$e^{\ln x} = x$

Properties of Logarithmic Functions		
Product Rule:	Power Rule:	
$\log_b(RS) = \log_b R + \log_b S$	$\log_b R^c = c \log_b R$	
Quotient Rule:	Change-of-Base Formula:	
$\log_b \frac{R}{S} = \log_b R - \log_b S$	$\log_b x = \frac{\log x}{\log b} = \frac{\ln x}{\ln b}$	

One-to-One Properties (for solving equations)			
For any exponential function: $f(x) = b^x$,	For any logarithmic function: $f(x) = \log_b x$,		
If $b^{u} = b^{v}$, then $u = v$.	If $\log_b u = \log_b v$, then $u = v$.		

EXPONENTIAL, LOGISTIC & LOGARITHMIC FUNCTIONS Formula Sheet

Exponential & Logistic Modeling & Applications Involving Logarithms			
Exponential Population Model		Newton's Law of Cooling	
$P(t) = P_0(1+r)^t$		$T(t) = T_m + (T_0 - T_m)e^{-kt}$	
Measuring Sound – Decibels	Richter Scale – Magnitude		Measuring Acidity – pH
$\beta = 10 \log \left(\frac{I}{I_0}\right)$	$R = \log($	$\left(\frac{a}{T}\right) + B$	$pH = -\log[H^+]$

Mathematics of Finance				
Interest Compounded:	Annually	k times per year	Continuously	
 <i>P</i>: principal <i>r</i>: fixed annual rate <i>n</i>: number of years <i>t</i>: time (not in years) 	$A = P(1+r)^n$	$A = P \left(1 + \frac{r}{k} \right)^{kt}$	$A = Pe^{rt}$	

Annual Percentage Yield (APY)		
<u>APY</u> – The percentage rate that, compounded annually, would yield the same return as the given interest rate w/the given compounding period; used to compare investments	$APY = \left(1 + \frac{r}{k}\right)^k - 1$	
Annuities – Future Value (FV)		
<u>Annuity</u> – A sequence of equal periodic (n) payments (R)	$r_{\rm LL} = n (1+i)^n - 1$	
Future Value =	$FV = R - \frac{1}{i}$	Misc.
all of the periodic payments + all interest	ί	. r
		$l = \frac{1}{k}$
Loans & Mortgages – Present Value (PV)		ĸ
<u>Present Value</u> – The net amount of money put into an annuity	$PV = R \frac{1 - (1+i)^{-n}}{i}$	n = kt