PROVING QUADRILATERALS & PARALLELOGRAMS

QUADRILATERAL	PROVE:
Parallelogram	 Both pairs of opp. sides are parallel (definition) Both pairs of opp. sides are congruent One pair of opp. sides are parallel and congruent Diagonals bisect each other
Rectangle	 Both pairs of opp. sides are congruent and all for angles are right angles (definition) Orfirst prove it's a parallelogram, and then prove The diagonals are congruent Two consecutive sides are perpendicular
Rhombus	 All four sides are congruent (definition) Orfirst prove it's a parallelogram, and then prove The diagonals are perpendicular
SQUARE	• All four angles are right angles and all four sides are congruent (definition) Orprove it's a rectangle AND a rhombus
TRAPEZOID	 Only one pair of sides are parallel (definition)
ISOSCELES TRAPEZOID	 Prove it's a trapezoid AND The non-parallel sides are congruent The diagonals are congruent
KITE	• Two pairs of consecutive sides are congruent and the opp. sides are not congruent (definition)

PROVING QUADRILATERALS & PARALLELOGRAMS

QUADRILATERAL	PROVE:
Parallelogram	 Both pairs of opp. sides are parallel (definition) Both pairs of opp. sides are congruent One pair of opp. sides are parallel and congruent Diagonals bisect each other
Rectangle	 Both pairs of opp. sides are congruent and all for angles are right angles (definition) Orfirst prove it's a parallelogram, and then prove The diagonals are congruent Two consecutive sides are
RHOMBUS	 perpendicular All four sides are congruent (definition) Orfirst prove it's a parallelogram, and then prove The diagonals are perpendicular
SQUARE	• All four angles are right angles and all four sides are congruent (definition) Orprove it's a rectangle AND a rhombus
TRAPEZOID	 Only one pair of sides are parallel (definition)
ISOSCELES TRAPEZOID	 Prove it's a trapezoid AND The non-parallel sides are congruent The diagonals are congruent
KITE	• Two pairs of consecutive sides are congruent and the opp. sides are not congruent (definition)

- Definition of Parallelogram
 - > A quadrilateral with both pairs of opp. sides parallel
- Chapter 6: Commonly Used Reasons in Proofs
 - ➢ If you're GIVEN a parallelogram:
 - Definition of ||ogram
 - Both pairs of opp. sides of a || ogram are \cong
 - Both pairs of opp. \angle s of a \parallel ogram are \cong
 - Consecutive ∠s of a ∥ogram are supp
 - The diagonals of a **||**ogram bisect each other
 - > If you're PROVING a parallelogram:
 - Definition of ||ogram
 - Both pairs of opp. sides are $\cong \rightarrow \|$ ogram
 - One pair of opp. sides are \parallel and $\cong \rightarrow \parallel$ ogram
 - Both pairs of opp. $\angle s$ are $\cong \rightarrow \|$ ogram
 - Consecutive \angle s are supp $\rightarrow \|$ ogram
 - The diagonals bisect each other $\rightarrow \|$ ogram

Parallel Lines:

- ✤ Given: ∥ lines
 - ▶ Alternate interior angles are \cong
- Prove: || lines
 - > Converse of Alternate Interior Angles Theorem

||ogram – Schultz's abbreviation for parallelogram

- ✤ Definition of Parallelogram
 - > A quadrilateral with both pairs of opp. sides parallel
- Chapter 6: Commonly Used Reasons in Proofs
 - > If you're GIVEN a parallelogram:
 - Definition of ||ogram
 - Both pairs of opp. sides of a ||ogram are \cong
 - Both pairs of opp. $\angle s$ of a $\|$ ogram are \cong
 - Consecutive ∠s of a ∥ogram are supp
 - The diagonals of a **||**ogram bisect each other
 - > If you're PROVING a parallelogram:
 - Definition of ||ogram
 - Both pairs of opp. sides are $\cong \rightarrow \|$ ogram
 - One pair of opp. sides are \parallel and $\cong \rightarrow \parallel$ ogram
 - Both pairs of opp. $\angle s$ are $\cong \rightarrow \|$ ogram
 - Consecutive \angle s are supp $\rightarrow \|$ ogram
 - The diagonals bisect each other $\rightarrow \|$ ogram

Parallel Lines:

- ✤ Given: ∥ lines
 - ▶ Alternate interior angles are \cong
- ✤ Prove: || lines
 - > Converse of Alternate Interior Angles Theorem

 $\| ogram-Schultz's \ abbreviation \ for \ parallelogram$