PROVINC QUADRILATERALS \& PARALLELOGRAMS

QUADRILATERAL	PROVE:
PARALLELOGRAM	-Both pairs of opp. sides are parallel (definition) -Both pairs of opp. sides are congruent One pair of opp. sides are parallel and congruent - Riagonals bisect each other
-Both pairs of opp. sides are congruent and all for angles are right angles (definition)	
RHOMBUS	Or...first prove it's a parallelogram, and then prove... - - The diagonals are congruent
Two consecutive sides are	
perpendicular	

PROVING QUADRILATERALS \& PARALLELOGRAMS

QuADRILATERAL	PROVE:
PARALLELOGRAM	- Both pairs of opp. sides are parallel (definition) - Both pairs of opp. sides are congruent - One pair of opp. sides are parallel and congruent - Diagonals bisect each other
Rectangle	- Both pairs of opp. sides are congruent and all for angles are right angles (definition) Or...first prove it's a parallelogram, and then prove... - The diagonals are congruent - Two consecutive sides are perpendicular
Rhombus	- All four sides are congruent (definition) Or...first prove it's a parallelogram, and then prove... - The diagonals are perpendicular
SQuARE	- All four angles are right angles and all four sides are congruent (definition) Or... prove it's a rectangle AND a rhombus
TRAPEZOID	- Only one pair of sides are parallel (definition)
Isosceles TRAPEZOID	Prove it's a trapezoid AND... - The non-parallel sides are congruent - The diagonals are congruent
KITE	- Two pairs of consecutive sides are congruent and the opp. sides are not congruent (definition)

* Definition of Parallelogram
> A quadrilateral with both pairs of opp. sides parallel
* Chapter 6: Commonly Used Reasons in Proofs
> If you're GIVEN a parallelogram:
- Definition of \|ogram
- Both pairs of opp. sides of a \|ogram are \cong
- Both pairs of opp. \angle s of a llogram are \cong
- Consecutive $\angle \mathrm{s}$ of a llogram are supp
- The diagonals of a llogram bisect each other
> If you're PROVING a parallelogram:
- Definition of IIogram
- Both pairs of opp. sides are $\cong \rightarrow$ \|ogram
- One pair of opp. sides are $\|$ and $\cong \rightarrow \|$ ogram
- Both pairs of opp. $\angle \mathrm{s}$ are $\cong \rightarrow$ \|ogram
- Consecutive \angle s are supp $\rightarrow \|$ ogram
- The diagonals bisect each other $\rightarrow \|$ ogram

Parallel Lines:

* Given: |l lines
> Alternate interior angles are \cong
* Prove: || lines
> Converse of Alternate Interior Angles Theorem
|logram - Schultz's abbreviation for parallelogram
* Definition of Parallelogram
> A quadrilateral with both pairs of opp. sides parallel
* Chapter 6: Commonly Used Reasons in Proofs
> If you're GIVEN a parallelogram:
- Definition of \|ogram
- Both pairs of opp. sides of a llogram are \cong
- Both pairs of opp. \angle s of a $\|$ ogram are \cong
- Consecutive \angle s of a llogram are supp
- The diagonals of a llogram bisect each other
> If you're PROVING a parallelogram:
- Definition of IIogram
- Both pairs of opp. sides are $\cong \rightarrow$ Iogram
- One pair of opp. sides are \| and $\cong \rightarrow$ \|ogram
- Both pairs of opp. $\angle \mathrm{s}$ are $\cong \rightarrow \|$ ogram
- Consecutive \angle s are supp $\rightarrow \|$ ogram
- The diagonals bisect each other \rightarrow \|ogram

Parallel Lines:

* Given: || lines
> Alternate interior angles are \cong
* Prove: |l lines
> Converse of Alternate Interior Angles Theorem
|logram - Schultz’s abbreviation for parallelogram

