Quadratics Review

Multiplying Polynomials

The Distributive Property
$>a(b+c)=a b+a c$

- An example: $3 x^{2}(x+5)$

$$
\begin{aligned}
3 x^{2}(x+5) & =3 x^{2}(x)+3 x^{2}(5) \\
& =3 x^{2} x^{1}+3 \cdot 5 x^{2} \\
& =3 x^{3}+15 x^{2}
\end{aligned}
$$

The FoIL Pattern:

FACTORING: THE PROCESS

- Always Look ror Common Factors

$>$ Use Divisibility Rules to spot the GCF!

- These rules let you test if one number is divisible by another - with little, to no, calculation!

DIVISIBLE BY...	IF...
$\mathbf{2}$	THE LAST DIGIT IS EVEN: $0,2,4,6,8$
$\mathbf{3}$	THE SUM OF THE DIGITS IS DIVISIBLE BY 3
$\mathbf{4}$	THE NUMBER FORMED BY THE LAST TWO DIGITS IS DIVISIBLE BY 4
$\mathbf{5}$	THE LAST DIGIT IS O OR 5
$\mathbf{6}$	THE NUMBER IS EVEN AND DIVISIBLE BY 3
$\mathbf{8}$	THE NUMBER FORMED BY THE LAST THREE DIGITS IS DIVISIBLE BY 8 8
$\mathbf{9}$	THE SUM OF THE DIGITS IS DIVISIBLE BY 9
$\mathbf{1 0}$	THE LAST DIGIT IS 0

* Look for Special Cases Involving Binomials

$>$ Difference of Two Squares: $\boldsymbol{a}^{2}-\boldsymbol{b}^{2}$

- Recognizing a Difference of Two Squares

$1^{2}=1$	$2^{2}=4$	$3^{2}=9$	$4^{2}=16$
$5^{2}=25$	$6^{2}=36$	$7^{2}=49$	$8^{2}=64$
$9^{2}=81$	$10^{2}=100$	$11^{2}=121$	$12^{2}=144$

- There must be two terms - both perfect squares
- There must be a minus sign between the two terms

Factoring a Difference of Two Squares: $\boldsymbol{a}^{2}-\boldsymbol{b}^{2}=(\boldsymbol{a}+\boldsymbol{b})(\boldsymbol{a}-\boldsymbol{b})$

- An example:

\[

\]

* Factoring Flow Chart

ALWAYS LOOK FOR A COMMON FACTOR FIRSI!

DEFOIL - FACTORING TRINOMIALS: $a x^{2}+b x+c$
> Multiply the first and last terms
> Find the factors (of the product in step I) that add up to be the middlle term
$>$ Replace the middle term with these factors
> Factor by grouping

- An example: $\boldsymbol{x}^{2}+b \boldsymbol{x}+\boldsymbol{c}$

$$
\begin{gathered}
n^{2}+5 n-24 \\
n^{2} \cdot(-24)=-24 n^{2} \\
-24 n^{2} \\
\hline 8 n \&-3 n \\
\hline n^{2}+8 n-3 n-24 \\
\\
\left(n^{2}+8 n\right)(-3 n-24) \\
n(n+8)-3(n+8) \\
(n+8)(n-3)
\end{gathered}
$$

MULTIPLY THE FIRST AND LAST TERMS
FIND THE FACTORS (OF THE PRODUCT IN STEP 1) THAT ADD UP THE TO BE THE MIDDLE TERM

REPLACE THE MIDDLE TERM WITH THESE FACTORS

FACTOR BY GROUPING

MULTIPLY THE FIRST AND LAST TERMS
FIND THE FACTORS (OF THE PRODUCT IN STEP 1) THAT ADD UP THE TO BE THE MIDDLE TERM

REPLACE THE MIDDLE TERM WITH THESE FACTORS

FACTOR BY GROUPING

Solving Quadratic Equations by Factoring

* Solving Quadratic Equations by Factoring
$>$ Set the equation - written in standard form - equal to 0

$$
\text { - } a x^{2}+b x+c=0
$$

\rightarrow Factor
$>$ Use the Zero-Product Property:

- Let a and b be real numbers. If $a b=0$, then $a=0$ or $b=0$.
- Set each factor equal to 0 and solve

Examples:

ALREADY IN FACTORED FORM:

Solve $(x-4)(x+2)=0$.

$$
\begin{array}{rlrrrl}
& (x-4)(x+2) & =0 & & \text { Write original equation. } \\
x-4=0 & \text { or } & x+2 & =0 & & \text { Zero-product property } \\
x=4 & \text { or } & x & =-2 & & \text { Solve for } x .
\end{array}
$$

- The solutions of the equation are 4 and -2 .

TWO TERMS:
Solve $6 n^{2}=15 n$.

$$
\begin{array}{rlrl}
6 n^{2}-15 n=0 & & \text { Subtract } 15 n \text { from each side. } \\
3 n(2 n-5)=0 & & \text { Factor left side. } \\
3 n=0 & \text { or } & 2 n-5=0 & \\
\text { Zero-product property } \\
n=0 & \text { or } & n=\frac{5}{2} & \\
\text { Solve for } n .
\end{array}
$$

- The solutions of the equation are 0 and $\frac{5}{2}$.

THREE TERMS:
Solve the equation $x^{2}+3 x=18$.

$$
\begin{array}{rlrl}
x^{2}+3 x & =18 & & \text { Write original equation. } \\
x^{2}+3 x-18 & =0 & & \text { Subtract } 18 \text { from each side. } \\
(x+6)(x-3) & =0 & & \text { Factor left side. } \\
x+6=0 & \text { or } & x-3=0 & \\
\text { Zero-product property } \\
x=-6 & \text { or } & x=3 & \\
\text { Solve for } x .
\end{array}
$$

- The solutions of the equation are -6 and 3 .

