Perimeter, Area, Surface Area, and Volume:

Review of Terminology, Basic Shapes, and Formulas

TARMINOLOGY

area: the measure of a bounded region of a two-dimensional shape expressed in square units
circumference: the distance around the edge of a circle
diameter: the distance across a circle through its center point
hypotenuse: the side opposite the 90° angle in a right triangle, also the longest side of a right triangle
perimeter: the total distance around the outside of a polygon
pi or π : the circumference of any circle divided by its diameter, rounded to the number 3.14
radius: the measure from the center of a circle to a point on the circle
slant: the diagonal distance from the top of a cone to its base slant height: the height of one of the triangular faces of a pyramid
surface area: the sum of all the areas of all surfaces of a three-dimensional object, measured in square units
volume: the amount of space inside a three-dimensional shape, measured in cubic units

ABBREVIATIONS:	$\mathrm{d}=$ diameter	$\mathrm{r}=$ radius
$\mathrm{A}=$ area	$\mathrm{h}=$ height	SA = surface area
$\mathrm{b}=$ base	$\mathrm{l}=$ length	slant $\mathrm{h}=$ slant height
BA = base area	$\mathrm{P}=$ perimeter	$\mathrm{V}=$ volume
$\mathrm{C}=$ circumference	$\pi=\mathrm{pi}=3.14$	$\mathrm{w}=$ width

BASIC SHAPES AND FORMULAS

2D SHAPES: PERIMETER AND AREA

Rectangle

$P=2 \cdot(l+w)$
$A=l \cdot w$

Triangle

$\mathrm{P}=$ side $a+$ side $b+$ side c
$A=1 / 2 \cdot(b \cdot h)$

3D SHAPES: SURFACE AREA AND VOLUME

Rectangular Prism

$S A=2 \cdot(l \cdot w+l \cdot h+w \cdot h)$
$V=l \cdot w \cdot h$

Square Pyramid

$S A=(B A)+1 / 2 \cdot P \cdot$ slant h
$V=1 / 3 \cdot B A \cdot h$

Note: base area (BA) of a square or
 rectangular pyramid is $\mathrm{l} \cdot \mathrm{w}$ of the base, and P is perimeter of the base.

Cylinder

SA $=\left(2 \cdot \pi \cdot r^{2}\right)+(\pi \cdot d \cdot h)$
$\mathrm{V}=\pi \cdot \mathrm{r}^{2} \cdot \mathrm{~h}$

Cone

SA $=\left(\pi \cdot r^{2}\right)+(\pi \cdot r \cdot$ slant $)$
$V=\pi \cdot 1 / 3 \cdot r^{2} \cdot h$

