Name: _____

Date: _____

1. The following expressions all define the same quadratic function.

$$(x - 4)(x + 6)$$

$$x^2 + 2x - 24$$
 $(x + 1)^2 - 25$

- a) What is the *y*-intercept of the graph of the function?
- b) What are the *x*-intercepts of the graph?
- c) What is the vertex of the graph?
- d) Sketch a graph of the function without graphing technology. Make sure the *x*-intercepts, *y*-intercept, and vertex are plotted accurately.

		У'					
		20					
		10					
							· ·
-8	-4	\mathcal{O}	_	2	1	8	з х́
-8	-4	0 10			1	2	3 X
-8	-4	0 10 20			1		3 X

2. Determine the *x*-intercepts and the *x*-coordinate of the vertex of the graph that represents each equation.

equation	x-intercepts	<i>x</i> -coordinate of the vertex
y = x(x-2)		
y = (x-4)(x+5)		
y = -5x(3-x)		

3. For each function, write the coordinates of the vertex of its graph and tell whether the graph opens up or down.

function	coordinates of vertex	graph opens up or down?
$f(x) = (x-4)^2 - 5$		
$g(x) = -x^2 + 5$		
$h(x) = 2(x+1)^2 - 4$		

4. Determine the *x*-intercepts, the vertex, and the *y*-intercept of the graph of each equation.

equation	x-intercepts	vertex	y-intercept
y = (x-5)(x-3)			
y = 2x(8-x)			

5. The following quadratic expressions all define the same function.

(x + 5)(x + 3) $x^{2} + 8x + 15$ $(x + 4)^{2} - 1$

Select *all* of the statements that are true about the graph of this function.

- The *y*-intercept is (0, -15).
- \bigcirc The vertex is (-4, -1).
- O The x-intercepts are (-5, 0) and (-3, 0).
- O The *x*-intercepts are (0, 5) and (0, 3).
- \bigcirc The *x*-intercept is (0, 15).
- \bigcirc The *y*-intercept is (0, 15).
- \bigcirc The vertex is (4, -1).

6. Here the graph of quadratic function f.

Andre uses the expression $(x - 5)^2 + 7$ to define f.

Noah uses the expression $(x + 5)^2 - 7$ to define f.

Do you agree with either of them? Explain your reasoning.

- 7. a) What is the *y*-intercept of the graph of the equation $y = x^2 5x + 4$?
 - b) An equivalent way to write this equation is y = (x - 4)(x - 1). What are the *x*-intercepts of this equation's graph?

8. Here is a graph that represents a quadratic function.

Which expression could define this function?

- A. (x+3)(x+1) B. (x+3)(x-1)
- C. (x-3)(x+1) D. (x-3)(x-1)

- 9. Select *all* equations whose graphs have a vertex with *x*-coordinate 2.
 - y = (x 2)(x 4) y = (x - 2)(x + 2) y = (x - 1)(x - 3)y = x(x + 4)
 - $\bigcirc y = x(x-4)$

- 10. Select *all* true statements about the graph that represents y = 2x(x 11).
 - O Its x-intercepts are at (-2, 0) and (11, 0).
 - \bigcirc Its *x*-intercepts are at (0,0) and (11,0).
 - O Its x-intercepts are at (2,0) and (-11,0).
 - \bigcirc It has only one *x*-intercept.
 - \bigcirc The *x*-coordinate of its vertex is -4.5.
 - \bigcirc The *x*-coordinate of its vertex is 11.
 - \bigcirc The *x*-coordinate of its vertex is 4.5.
 - \bigcirc The *x*-coordinate of its vertex is 5.5.

- 11. For each equation, write the coordinates of the vertex of the graph that represents the equation.
 - 1. $y = (x 3)^2 + 5$ 2. $y = (x + 7)^2 + 3$ 3. $y = (x - 4)^2$ 4. $y = x^2 - 1$ 5. $y = 2(x + 1)^2 - 5$ 6. $y = -2(x + 1)^2 - 5$

- 13. If one factor of $6x^2 + 5x 6$ is 3x 2, the other factor is
 - A. 3x + 3 B. 6x + 3

C. 2x + 3 D. 2x - 3

- 14. Written in factored form, the trinomial $3x^2 + 5x 2$ is equivalent to
 - A. (3x+1)(x-2) B. (3x-1)(x+2)
 - C. (3x+2)(x-1) D. (3x-2)(x+1)

15. Factor completely: $3x^2 - 15x - 42$

12. What are the *x*-intercepts of the graph of $y = 12x^2 - 5x - 2$?

- A. 1 and $-\frac{1}{6}$ B. -1 and $\frac{1}{6}$
- C. $\frac{2}{3}$ and $-\frac{1}{4}$ D. $-\frac{2}{3}$ and $\frac{1}{4}$
- 16. Factor completely: $2a^2 + 2a 84$

17. Which equation is represented by the graph? $ \begin{array}{c c} \hline (-3, -1) \\ \hline -8 \\ \hline -6 \\ \hline -4 \\ \hline -2 \\ \hline -2 \\ \hline -2 \\ \hline -2 \\ \hline -4 \\ \hline -2 \\ $	21. What is the product of $(-2x^3)(5x^{-4})$? A. $-10x^{12}$ B. $-10x^{-1}$ C. $3x^7$ D. $10x^7$
A. $y = (x - 1)^2 + 3$ B. $y = (x - 3)^2 + 1$ C. $y = -(x + 3)^2 - 1$ D. $y = -(x - 3)^2 + 1$	22. Which expression is equivalent to $(-2x^4)^2$? A. $4x^6$ B. $4x^8$ C. $-4x^8$ D. $4x^{16}$
18. Which expression is equivalent to $(3x^2)^3$? A. $9x^5$ B. $9x^6$ C. $27x^5$ D. $27x^6$	23. If y varies directly as x and $y = 32$ when $x = 4$, find the value of y when $x = 5$.
19. The expression $\frac{(10w^3)^2}{5w}$ is equivalent to A. $2w^5$ B. $2w^8$ C. $20w^5$ D. $20w^8$	24. The number of chirps made by a cricket varies directly as the temperature. If at 12° a cricket chirps 30 times per minute, how many times per minute will the cricket chirp at 20°?
20. The quotient of $\frac{-18x^6}{6x^3}$ is equal to A. $-3x^3$ B. $-3x^2$ C. $-12x^2$ D. $-12x^3$	25. The diameter of a wheel varies inversely as the number of revolutions that the wheel makes to cover a certain distance. If a wheel with a 26-inch diameter makes 10 revolutions in covering a certain distance, how many revolutions will a wheel with a diameter of 20 inches make in covering the same distance?

Problem-Attic format version 4.4.476 © 2011–2020 EducAide Software Licensed for use by Jennifer Backer Terms of Use at www.problem-attic.com

Review: Quadratic & Power Functions 5/5/2022

1. Answer: Points:	1	16. Answer: Points:	2(a + 7)(a - 6) 1
2. Answer: Points:	1	17. Answer: Points:	1
3. Answer: Points:	1	18. Answer: Points:	D 1
4. Answer: Points:	1	19. Answer: Points:	C 1
5. Points:	1	20. Answer: Points:	A 1
o. Answer: Points:	1	21. Answer: Points:	B 1
7. Answer: Points:	1	22. Answer: Points:	B 1
8. Answer: Points:	1	23. Answer:	40
9. Points:	1	24.	1
10. Points:	1	Answer: Points:	50 1
11. Answer: Points:	1	25. Answer: Points:	13 1
12. Answer: Objective: Points:	C 2A.10.0 1		
13. Answer: Points:	C 1		
14. Answer: Points:	B 1		
15. Answer: Points:	3(x+2)(x-7)		