Factoring expressions and Solving Equations That Are Quadratic in Form

You have already learned how to factor quadratic expressions in the form of $ax^2 + bx + c$ where a $\neq 0$. However, there are instances where you will be faced with trinomials of a degree higher than two but still fit the quadratic form. For example, the trinomial $ax^4 + bx^2 + c$ has a degree power of four but it still fits the quadratic form.

$$ax^{4} + bx^{2} + c = a(x^{2})^{2} + b(x^{2}) + c$$

= $au^{2} + bu + c$

This substitution pattern can also be applied to situations where there is an algebraic expression in place of x in the quadratic form. Take for example the expression $2(x - 3)^2 - 5(x - 3) - 12$. In this trinomial instead of have x and x^2 we have (x - 3) and $(x - 3)^2$.

$$2(x-3)^{2} - 5(x-3) - 12 = 2(x-3)^{2} - 5(x-3) - 12$$

= 2u² - 5u - 12

The following steps can be used to solve equations that are quadratic in form:

- 1. Let u equal a function of the original variable (normally the middle term)
- 2. Substitute u into the original equation so that it is in the form $au^2 + bu + c = 0$
- 3. Factor the quadratic equation using the methods learned earlier
- 4. Solve the equation for u
- 5. Replace u with the expression of the original variable
- 6. Solve the resulting equation for the original variable
- 7. Check for any extraneous solutions

Example 1: Solve the equation $x^4 - 13x^2 + 36 = 0$.

Solution

Step 1: Let u equal a function of the original variable

In this problem, we would let u equal x^2

Step 2: Substitute u into the original equation for the variable expression

Before performing the substitution rewrite x^4 as a multiply of x^2 which will be replaced by u. $x^4 = (x^2)^2$

$$\begin{aligned} x^4 - 13x^2 + 36 &= 0\\ (x^2)^2 - 13x^2 + 36 &= 0\\ u^2 - 13u + 36 &= 0 \end{aligned}$$

Example 1 (Continued):

Step 3: Factor the quadratic equation

$$u^{2} - 13u + 36 = 0$$

(u - 4)(u - 9) = 0

Step 4: Solve the equation for u

$$(u-4)(u-9) = 0$$

 $u-4 = 0$ or $u-9 = 0$
 $u = 4$ or $u = 9$

Step 5: Replace u with the expression of the original variable

u = 4	or	u = 9
$x^2 = 4$	or	$x^2 = 9$

Step 6: Solve for the original variable

$x^2 = 4$	or	$x^2 = 9$
$x^2 - 4 = 0$	or	$x^2 - 9 = 0$
(x-2)(x+2) = 0	or	(x-3)(x+3) = 0
x - 2 = 0 or $x + 2 = 0$	or	x - 3 = 0 or $x + 3 = 0$
x = 2 or $x = -2$	or	x = 3 or $x = -3$

Step 7: Check for any extraneous solutions

$$x = 2$$

$$x^{4} - 13x^{2} + 36 = 0$$

$$(2)^{4} - 13(2)^{2} + 36 = 0$$

$$16 - 52 + 36 = 0$$

$$52 - 52 = 0$$

$$0 = 0$$

$$x = -2$$

$$x^{4} - 13x^{2} + 36 = 0$$

$$(-2)^{4} - 13(-2)^{2} + 36 = 0$$

$$16 - 52 + 36 = 0$$

$$52 - 52 = 0$$

$$0 = 0$$

Example 1 (Continued):

$$x = 3$$

$$x^{4} - 13x^{2} + 36 = 0$$

$$(3)^{4} - 13(3)^{2} + 36 = 0$$

$$81 - 117 + 36 = 0$$

$$117 - 117 = 0$$

$$0 = 0$$

$$x = -3$$

$$x^{4} - 13x^{2} + 36 = 0$$

$$(-3)^{4} - 13(-3)^{2} + 36 = 0$$

$$81 - 117 + 36 = 0$$

$$117 - 117 = 0$$

$$0 = 0$$

Example 2: Solve the equation $2x^{2/3} - 7x^{1/3} + 6 = 0$.

Solution

Step 1: Let u equal a function of the original variable

In this problem, we would let u equal $x^{1/3}$

Step 2: Substitute u into the original equation for the variable expression

Before performing the substitution rewrite $x^{2/3}$ as a multiply of $x^{1/3}$ which will be replaced by u. $x^{2/3} = (x^{1/3})^2$

$$2x^{2/3} - 7x^{1/3} + 6 = 0$$

$$2(x^{1/3})^2 - 7x^{1/3} + 6 = 0$$

$$2u^2 - 7u + 6 = 0$$

Step 3: Factor the quadratic equation

$$2u^{2} - 7u + 6 = 0$$
$$(2u - 3)(u - 2) = 0$$

Step 4: Solve the equation for u

$$(2u-3)(u-2) = 0$$

 $2u-3 = 0$ or $u-2 = 0$
 $2u = 3$ or $u = 2$

$$u = 3/2$$

Example 1 (Continued):

Step 5: Replace u with the expression of the original variable

u = 3/2	or	u = 2
$x^{1/3} = 3/2$	or	$x^{1/3} = 2$

Step 6: Solve for the original variable

$x^{1/3} = 3/2$	or	$x^{1/3} = 2$
$(x^{1/3})^3 = (3/2)^3$	or	$(x^{1/3})^3 = (2)^3$
x = 27/8	or	x = 8

Step 7: Check for any extraneous solutions

$$\begin{aligned} x &= 27/8 \\ & 2x^{2/3} - 7x^{1/3} + 6 = 0 \\ & 2(27/8)^{2/3} - 7(27/8)^{1/3} + 6 = 0 \\ & 2[(27/8)^{1/3}]^2 - 7(27/8)^{1/3} + 6 = 0 \\ & 2(3/2)^2 - 7(3/2) + 6 = 0 \\ & 2(9/4) - 21/2 + 6 = 0 \\ & 9/2 - 21/2 + 6 = 0 \\ & -12/2 + 6 = 0 \\ & -6 + 6 = 0 \\ & 0 = 0 \end{aligned}$$

x = 8

$$2x^{2/3} - 7x^{1/3} + 6 = 0$$

$$2(8)^{2/3} - 7(8)^{1/3} + 6 = 0$$

$$2[(8)^{1/3}]^2 - 7(8)^{1/3} + 6 = 0$$

$$2(2)^2 - 7(2) + 6 = 0$$

$$2(4) - 14 + 6 = 0$$

$$8 - 14 + 6 = 0$$

$$14 - 14 = 0$$

$$0 = 0$$