Factoring expressions and Solving Equations That Are Quadratic in Form

You have already learned how to factor quadratic expressions in the form of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$ where a $\neq 0$. However, there are instances where you will be faced with trinomials of a degree higher than two but still fit the quadratic form. For example, the trinomial $\mathrm{ax}^{4}+\mathrm{bx}^{2}+\mathrm{c}$ has a degree power of four but it still fits the quadratic form.

$$
\begin{aligned}
a x^{4}+b x^{2}+c & =a\left(x^{2}\right)^{2}+b\left(x^{2}\right)+c \\
& =a u^{2}+b u+c
\end{aligned}
$$

This substitution pattern can also be applied to situations where there is an algebraic expression in place of x in the quadratic form. Take for example the expression $2(x-3)^{2}-5(x-3)-12$. In this trinomial instead of have x and x^{2} we have $(x-3)$ and $(x-3)^{2}$.

$$
\begin{aligned}
2(x-3)^{2}-5(x-3)-12 & =2(x-3)^{2}-5(x-3)-12 \\
& =2 u^{2}-5 u-12
\end{aligned}
$$

The following steps can be used to solve equations that are quadratic in form:

1. Let u equal a function of the original variable (normally the middle term)
2. Substitute u into the original equation so that it is in the form $a u^{2}+b u+c=0$
3. Factor the quadratic equation using the methods learned earlier
4. Solve the equation for u
5. Replace u with the expression of the original variable
6. Solve the resulting equation for the original variable
7. Check for any extraneous solutions

Example 1: Solve the equation $x^{4}-13 x^{2}+36=0$.

Solution

Step 1: Let u equal a function of the original variable

In this problem, we would let u equal x^{2}
Step 2: Substitute u into the original equation for the variable expression
Before performing the substitution rewrite x^{4} as a multiply of x^{2} which will be replaced by $u . x^{4}=\left(x^{2}\right)^{2}$

$$
\begin{aligned}
& x^{4}-13 x^{2}+36=0 \\
& \left(x^{2}\right)^{2}-13 x^{2}+36=0 \\
& u^{2}-13 u+36=0
\end{aligned}
$$

Example 1 (Continued):

Step 3: Factor the quadratic equation

$$
\begin{aligned}
& u^{2}-13 u+36=0 \\
& (u-4)(u-9)=0
\end{aligned}
$$

Step 4: Solve the equation for u

$$
\begin{array}{lcl}
(u-4)(u-9)=0 & \\
u-4=0 & \text { or } & u-9=0 \\
u=4 & \text { or } & u=9
\end{array}
$$

Step 5: Replace u with the expression of the original variable

$$
\begin{array}{lll}
u=4 & \text { or } & u_{1}=9 \\
x^{2}=4 & \text { or } & x^{2}=9
\end{array}
$$

Step 6: Solve for the original variable

$$
\begin{array}{lll}
x^{2}=4 & \text { or } & x^{2}=9 \\
x^{2}-4=0 & \text { or } & x^{2}-9=0 \\
(x-2)(x+2)=0 & \text { or } & (x-3)(x+3)=0 \\
x-2=0 & \text { or } x+2=0 & \text { or } \\
x-3=0 \quad \text { or } x+3=0 \\
x=2 & \text { or } x=-2 & \text { or } \\
x=3 & \text { or } x=-3
\end{array}
$$

Step 7: Check for any extraneous solutions
$x=2$

$$
\begin{aligned}
& x^{4}-13 x^{2}+36=0 \\
& (2)^{4}-13(2)^{2}+36=0 \\
& 16-52+36=0 \\
& 52-52=0 \\
& 0=0
\end{aligned}
$$

$x=-2$

$$
\begin{aligned}
& x^{4}-13 x^{2}+36=0 \\
& (-2)^{4}-13(-2)^{2}+36=0 \\
& 16-52+36=0 \\
& 52-52=0 \\
& 0=0
\end{aligned}
$$

Example 1 (Continued):

$$
\begin{aligned}
& \mathrm{x}=3 \\
& \\
& \quad \mathrm{x}^{4}-13 \mathrm{x}^{2}+36=0 \\
& (3)^{4}-13(3)^{2}+36=0 \\
& 81-117+36=0 \\
& 117-117=0 \\
& 0=0 \\
& \mathrm{x}=-3 \\
& \\
& \mathrm{x}^{4}-13 \mathrm{x}^{2}+36=0 \\
& (-3)^{4}-13(-3)^{2}+36=0 \\
& 81-117+36=0 \\
& 117-117=0 \\
& 0=0
\end{aligned}
$$

Example 2: Solve the equation $2 x^{2 / 3}-7 x^{1 / 3}+6=0$.

Solution

Step 1: Let u equal a function of the original variable

In this problem, we would let u equal $x^{1 / 3}$
Step 2: Substitute u into the original equation for the variable expression
Before performing the substitution rewrite $x^{2 / 3}$ as a multiply of $x^{1 / 3}$ which will be replaced by u. $x^{2 / 3}=\left(x^{1 / 3}\right)^{2}$

$$
\begin{aligned}
& 2 x^{2 / 3}-7 x^{1 / 3}+6=0 \\
& 2\left(x^{1 / 3}\right)^{2}-7 x^{1 / 3}+6=0 \\
& 2 u^{2}-7 u+6=0
\end{aligned}
$$

Step 3: Factor the quadratic equation

$$
\begin{aligned}
& 2 u^{2}-7 u+6=0 \\
& (2 u-3)(u-2)=0
\end{aligned}
$$

Step 4: Solve the equation for u

$$
\begin{array}{lll}
(2 u-3)(u-2)=0 & \\
2 u-3=0 & \text { or } & u-2=0 \\
2 u=3 & \text { or } & u=2
\end{array}
$$

$$
u=3 / 2
$$

Example 1 (Continued):
Step 5: Replace u with the expression of the original variable

$$
\begin{array}{lll}
u=3 / 2 & \text { or } & u=2 \\
x^{1 / 3}=3 / 2 & \text { or } & x^{1 / 3}=2
\end{array}
$$

Step 6: Solve for the original variable

$$
\begin{array}{lll}
x^{1 / 3}=3 / 2 & \text { or } & x^{1 / 3}=2 \\
\left(x^{1 / 3}\right)^{3}=(3 / 2)^{3} & \text { or } & \left(x^{1 / 3}\right)^{3}=(2)^{3} \\
x=27 / 8 & \text { or } & x=8
\end{array}
$$

Step 7: Check for any extraneous solutions

$$
x=27 / 8
$$

$$
\begin{aligned}
& 2 \mathrm{x}^{2 / 3}-7 \mathrm{x}^{1 / 3}+6=0 \\
& 2(27 / 8)^{2 / 3}-7(27 / 8)^{1 / 3}+6=0 \\
& 2\left[(27 / 8)^{1 / 3}\right]^{2}-7(27 / 8)^{1 / 3}+6=0 \\
& 2(3 / 2)^{2}-7(3 / 2)+6=0 \\
& 2(9 / 4)-21 / 2+6=0 \\
& 9 / 2-21 / 2+6=0 \\
& -12 / 2+6=0 \\
& -6+6=0 \\
& 0=0
\end{aligned}
$$

$$
x=8
$$

$$
\begin{aligned}
& 2 x^{2 / 3}-7 x^{1 / 3}+6=0 \\
& 2(8)^{2 / 3}-7(8)^{1 / 3}+6=0 \\
& 2\left[(8)^{1 / 3}\right]^{2}-7(8)^{1 / 3}+6=0 \\
& 2(2)^{2}-7(2)+6=0 \\
& 2(4)-14+6=0 \\
& 8-14+6=0 \\
& 14-14=0 \\
& 0=0
\end{aligned}
$$

