SOLVING TRIG EQUATIONS WITH RADIANS

Solving Non-Quadratic Trigonometric Equations

- 1. Get the trig function alone.
- 2. Where are the solutions?
 - a. What quadrants?
 - b. OR...quadrantal angles?
- 3. Draw a reference triangle to determine the reference angle.
- 4. Use the reference angle to find the solutions in the proper quadrants.

Solving Quadratic Trigonometric Equations

- 1. If necessary, use a Pythagorean Identity to rewrite the equation so trig functions are the same.
- 2. Set equal to zero.
- 3. If possible, factor.

OR...Use the Square Root Property:

4. Use the Zero Product Property to solve.

If $x^2 = c$, then $x = \pm c$.

If x = c, then x = c

5. Follow the steps (above) to finish solving.

EXAMPLE #1			
$2\sqrt{3}\cos\theta\sin\theta - \cos\theta = 2\cos\theta$ Subtract 2 cos \theta from each side. $2\sqrt{3}\cos\theta\sin\theta - 3\cos\theta = 0$		Set equal to zero.	
$\cos\theta\left(2\sqrt{3}\sin\theta-3\right)=0$		Factoring IS possible. Common factor of $\cos \theta$.	
$\cos \theta = 0$	$2\sqrt{3}\sin\theta - 3 = 0$ $\sin\theta = \frac{3}{2\sqrt{3}} = \frac{\sqrt{3}}{2}$	<i>Use the Zero Product Property to solve.</i> Simplify square roots.	
Quadrantal Angle (cosine is x)	Sine is positive in quadrants 1 & 2.	Where are the solutions?	
$(-1,0) \qquad (1,0) \qquad (1,$	$2 \sqrt{3}$ 60° 1	Draw a reference triangle to determine the reference angle. Recall: sine is opposite over hypotenuse. The reference angle is 60°	
$\theta = \frac{\pi}{2}, \frac{3\pi}{2}$	$\theta = \frac{\pi}{3}, \frac{2\pi}{3}$	Use the reference angle to find the solutions in the proper quadrants.	

EXAMPLE #2		
$2\sin^2\theta + 4 = 5$ $2\sin^2\theta - 1 = 0$		Set equal to zero.
$2\sin^2\theta = 1 \rightarrow \sin^2\theta = \frac{1}{2} \rightarrow \sqrt{\sin^2\theta} = \pm \sqrt{\frac{1}{2}}$		<i>Factoring isn't possible.</i> Since there is no "linear" term, use the Square Root Property.
$\rightarrow \sin \theta = \pm \frac{1}{\sqrt{2}} \rightarrow \sin \theta = \pm \frac{\sqrt{2}}{2}$		Simplify square roots.
Sine is positive in quadrants 1 & 2. Sine is negative in quadrants 3 & 4.		Where are the solutions?
$2 \sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$		Draw a reference triangle to determine the reference angle. Recall: sine is opposite over hypotenuse. The reference angle is 45°
$\theta = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$		<i>Use the reference angle to find the solutions in the proper quadrants.</i>
EXAMPLE #3		
$\sin^2\theta + 2 - \cos^2\theta = 3\sin\theta$		
$\sin^2\theta + 2 - \cos^2\theta = 3\sin\theta$ $\sin^2\theta + 2 - (1 - \sin^2\theta) = 3\sin\theta$		Use a Pythagorean Identity to rewrite the equation so trig functions are the same. $\cos^2\theta = 1 - \sin^2\theta$
$\sin^2\theta + 2 - 1 + \sin^2\theta = 3\sin\theta$ $2\sin^2\theta - 3\sin\theta + 1 = 0$		Simplify/Combine Like Terms Set equal to zero.
$2x^{2} - 3x + 1 = 0$ (2x - 1)(x - 1) = 0 (2 sin \theta - 1)(sin \theta - 1) = 0		Factoring IS possible. Rewrite algebraically, factor, and then put $\sin \theta$ back in for x.
$2\sin\theta - 1 = 0$ $\sin\theta = \frac{1}{2}$	$\sin \theta - 1 = 0$ $\sin \theta = 1$	Use the Zero Product Property to solve.
Sine is positive in quadrants 1 & 2.	Quadrantal Angle (sine is y)	Where are the solutions?
2 1 30° $\sqrt{3}$	$\begin{array}{c c} (0,1) \\ \hline \pi \\ (0,-1) \\ \hline \pi \\ (0,-1) \\ \hline \pi \\ \hline 0,2\pi \\ \hline 3\pi \\ 2 \end{array}$	Draw a reference triangle to determine the reference angle. Recall: sine is opposite over hypotenuse. The reference angle is 30°
$\theta = \frac{\pi}{6}, \frac{5\pi}{6}$	$\theta = \frac{\pi}{2}$	Use the reference angle to find the solutions in the proper quadrants.