Simplifying Square Roots and Cube Roots

Square Roots \quad Cube Roots

We know:
$\sqrt{4}=2$, since $2^{2}=4$ and $\sqrt{9}=3$, since $3^{2}=9$.
We also know that $\sqrt{8}$ won't come out to a whole number, but we can simplify it using $\sqrt{4}$ (because it comes out to a whole number) in the following way:

$$
\begin{aligned}
\sqrt{8} & =\sqrt{4 \cdot 2} \\
& =\sqrt{4} \sqrt{2} \\
& =2 \sqrt{2}
\end{aligned}
$$

We use this same principle (with other perfect square numbers) in order to simplify other square roots. Here are some other examples:

For radicals with an index higher than three, it can be helpful to write down a short list of integers raised to the power of the index you are trying to simplify. For example when dealing with a fourth root:
$2^{4}=16,3^{4}=81,4^{4}=256,5^{4}=625, \ldots$

