Simplifying Square Roots and Cube Roots

Square Roots		Cube Roots	
We know:		We know:	
$\sqrt{4} = 2$, since $2^2 = 4$ and $\sqrt{9} = 3$, since $3^2 = 9$.		$\sqrt[3]{8} = 2$, since $2^3 = 8$ and $\sqrt[3]{27} = 3$, since $3^3 = 27$.	
We also know that $\sqrt{8}$ won't come out to a whole		We also know that $\sqrt[3]{16}$ won't come out to a whole	
number, but we can simplify it using $\sqrt{4}$ (because it		number, but we can simplify it using $\sqrt[3]{8}$ (because it	
comes out to a whole number) in the following way:		comes out to a whole number) in the following way.	
$\sqrt{8} = \sqrt{4 \cdot 2}$		$\sqrt[3]{16} = \sqrt[3]{8 \cdot 2}$	
$=\sqrt{4}\sqrt{2}$		$=\sqrt[3]{8}\sqrt[3]{2}$	
$= 2\sqrt{2}$		$= 2\sqrt[3]{2}$	
We use this same principle (with other perfect		We use this same principle (with other perfect cube	
square numbers) in order to simplify other square roots. Here are some other examples:		Here are some other examples:	
$\sqrt{20} = \sqrt{4 \cdot 5}$	$\sqrt{18} = \sqrt{9 \cdot 2}$	$\frac{3}{\sqrt{32}} = \frac{3}{\sqrt{8 \cdot 4}}$	$\sqrt[3]{54} = \sqrt[3]{27 \cdot 2}$
$=\sqrt{4}\sqrt{5}$	$=\sqrt{9}\sqrt{2}$	$=\sqrt[3]{8}\sqrt[3]{4}$	$=\sqrt[3]{27}\sqrt[3]{2}$
$= 2\sqrt{5}$	$= 3\sqrt{2}$	$= 2\sqrt[3]{4}$	$= 3\sqrt[3]{2}$
$\sqrt{12} = \sqrt{4 \cdot 3}$	$\sqrt{45} = \sqrt{9 \cdot 5}$	$\sqrt[3]{40} = \sqrt[3]{8 \cdot 5}$	$\sqrt[3]{81} = \sqrt[3]{27 \cdot 3}$
$=\sqrt{4}\sqrt{3}$	$=\sqrt{9}\sqrt{5}$	$=\sqrt[3]{8}\sqrt[3]{5}$	$=\sqrt[3]{27}\sqrt[3]{3}$
$= 2\sqrt{3}$	$= 3\sqrt{5}$	$= 2\sqrt[3]{5}$	$= 3\sqrt[3]{3}$
$\sqrt{40} = \sqrt{4 \cdot 10}$	$\sqrt{27} = \sqrt{9 \cdot 3}$	$\sqrt[3]{48} = \sqrt[3]{8 \cdot 6}$	$\sqrt[3]{135} = \sqrt[3]{27 \cdot 5}$
$=\sqrt{4}\sqrt{10}$	$=\sqrt{9}\sqrt{3}$	$=\sqrt[3]{8}\sqrt[3]{6}$	$=\sqrt[3]{27}\sqrt[3]{5}$
$= 2\sqrt{10}$	$= 3\sqrt{3}$	$= 2\sqrt[3]{6}$	$= 3\sqrt[3]{5}$
$\sqrt{88} = \sqrt{4 \cdot 22}$	$\sqrt{99} = \sqrt{9 \cdot 11}$	$\sqrt[3]{88} = \sqrt[3]{8 \cdot 11}$	$\sqrt[3]{297} = \sqrt[3]{27 \cdot 11}$
$=\sqrt{4}\sqrt{22}$	$=\sqrt{9}\sqrt{11}$	$=\sqrt[3]{8}\sqrt[3]{11}$	$=\sqrt[3]{27}\sqrt[3]{11}$
$= 2\sqrt{22}$	$= 3\sqrt{11}$	$= 2\sqrt[3]{11}$	$= 3\sqrt[3]{11}$
$\sqrt{32} = \sqrt{16 \cdot 2}$	$\sqrt{50} = \sqrt{25 \cdot 2}$	$\sqrt[3]{250} = \sqrt[3]{125 \cdot 2}$	$\sqrt[3]{128} = \sqrt[3]{64 \cdot 2}$
$=\sqrt{16}\sqrt{2}$	$=\sqrt{25}\sqrt{2}$	$=\sqrt[3]{125}\sqrt[3]{2}$	$=\sqrt[3]{64}\sqrt[3]{2}$
$= 4\sqrt{2}$	$= 5\sqrt{2}$	$= 5\sqrt[3]{3}$	$= 4\sqrt[3]{2}$
$\sqrt{605} = \sqrt{121 \cdot 5}$	$\sqrt{432} = \sqrt{144 \cdot 3}$	$\sqrt[3]{625} = \sqrt[3]{125 \cdot 5}$	$\sqrt[3]{768} = \sqrt[3]{64 \cdot 12}$
$=\sqrt{121}\sqrt{5}$	$=\sqrt{144}\sqrt{3}$	$=\sqrt[3]{125}\sqrt[3]{5}$	$=\sqrt[3]{64}\sqrt[3]{12}$
$= 11\sqrt{5}$	$= 12\sqrt{3}$	$= 5\sqrt[3]{5}$	$= 4\sqrt[3]{12}$

For radicals with an index higher than three, it can be helpful to write down a short list of integers raised to the power of the index you are trying to simplify. For example when dealing with a fourth root: $2^4 = 16$, $3^4 = 81$, $4^4 = 256$, $5^4 = 625$, . . .