
THE LAW OF SINES - THE AMBIGUOUS CASE

$$\frac{\sin P}{p} = \frac{\sin Q}{q} = \frac{\sin R}{r}$$

- Approach this problem as you would any Law of Sines problem by substituting those values you know into the Law of Sines:
- 2. We can solve for $\angle R$:
- 3. Assume that there are two triangles and find the measure of $\angle R_2$:
- 4. Now find the measure of the third angle in each triangle.

(The sum of all three angles is 180°) Since the m $\angle P_2$ exists (b/c it's positive) we have two triangles.

- 5. Now we have to find p_1 and p_2 . We need to set up and solve two proportions and use the corresponding $\angle P$.
- 6. Our solutions:

 $\frac{\sin P}{p} = \frac{\sin 39}{28} = \frac{\sin R}{41}$

$$\sin R = \frac{41 \times \sin 39}{28} \approx 0.9215$$

 $m \angle R = \sin^{-1} 0.9215 \approx 67.1^{\circ}$

$$m \angle R_2 = 180 - m \angle R_1 = 180 - 67.1 = 112.9^{\circ}$$

Triangle 1			Triangle 2	
$m \angle R_1$	67.1°		$m \angle R_2$	112.9°
$m \angle P_1$	73.9°		$m \angle P_2$	28.1°
p_1			p_2	
$\frac{\sin 73.9}{\sin 39}$			$\frac{\sin 28.1}{\sin 39}$	
p_1	28		p_2	28
$28 \times \sin 73.9$			$28 \times \sin 28.1$	
$p_1 = \frac{1}{\sin 39}$			$p_2 = \frac{1}{\sin 39}$	
$p_1 \approx 42.7$			$p_2 \approx 21.0$	
Triangle 1			Triangle 2	
$m \angle R_1$	67.1°		$m \angle R_2$	112.9°
$m \angle P_1$	73.9°		$m \angle P_2$	28.1°
p_1	42.7		p_2	21.0
		-		