Save This Sheet !	TI-83+/84+ Quick Trigonome	Reference Sheet etry Section
Image: Sector of the sector	Radians/Degrees:Degrees to radians:mult. by $\frac{\pi}{180}$ Radians to degrees:mult. by $\frac{180}{\pi}$ To quickly change to degrees whilein radian mode, use the degreesymbol. 2^{nd} ANGLE - #1 °	Reciprocal Functions:1. $\csc(x)$ uses $\frac{1}{\sin(x)}$ 2. $\sec(x)$ uses $\frac{1}{\cos(x)}$ 3. $\cot(x)$ uses $\frac{1}{\tan(x)}$
	To Graph Trig. Functions: 1. Enter equation in Y=. 2. Use ZOOM #7 (scales $\frac{\pi}{2}$ or 90°) On 83+ or older OS, the graphs such as tan(x) show vertical lines. While they appear to be asymptotes, they are not. They are "connected mode".	Verify Trig Identities: Place the left side of the equation in Y1 and the right side in Y2. Set the mark in front of Y2 to "bubble". Graph. If the equation is true, the "bubble" will run on top of the first graph. Also check TABLE listings.

Inverse Functions: Remember: $\operatorname{arcsin}(x) = \sin^{-1}(x)$ The inverse reciprocals need special attention:

 $\csc^{-1}(x) = \sin^{-1}\left(\frac{1}{x}\right)$

```
\sec^{-1}(x) = \cos^{-1}\left(\frac{1}{x}\right)
```

$$\cot^{-1}(x) = \begin{cases} \tan^{-1}\left(\frac{1}{x}\right); \ x > 0\\ \tan^{-1}\left(\frac{1}{x}\right) + \pi; \ x < 0\\ \frac{\pi}{2}; \ x = 0 \end{cases}$$

ſ

The graphs of the inverse functions will show the restricted domains that ensure they are functions.

Probability section:

Combination/permutation: Enter first value then go to MATH \rightarrow PRB	Bernoulli Trials: "EXACTLY"
"AT MOST" binomcdf(<i>n</i> , <i>p</i> , <i>r</i>)	Go to: DISTR (2^{nd} VARS), #0 binompdf The parameters are:
"AT LEAST" 1-binomcdf(<i>n</i> , <i>p</i> , <i>r</i> -1)	binompdf (number of trials, probability of occurrence, number of specific events) ${}_{6}C_{3} \cdot (.5)^{3} \cdot (.5)^{6-3}$ becomes binompdf(6, .5, 3)
Using same <i>n</i> , <i>p</i> , <i>r</i> parameters	