How to use the definitions of the trigonometric functions to prove an identity:

$$
\begin{aligned}
& \cot \theta=\frac{\cos \theta}{\sin \theta} \\
& \cot \theta=\frac{\frac{x}{r}}{\frac{y}{r}} \rightarrow \frac{x}{r} \div \frac{y}{r} \\
& \cot \theta=\frac{x}{r} \times \frac{r}{y}=\frac{x r}{r y} \\
& \cot \theta=\frac{x}{y}
\end{aligned}
$$

$$
1=\sin ^{2} \alpha+\cos ^{2} \alpha
$$

$$
1=\left(\frac{y}{r}\right)^{2}+\left(\frac{x}{r}\right)^{2}
$$

$$
1=\frac{y^{2}}{r^{2}}+\frac{x^{2}}{r^{2}}
$$

$$
1=\frac{y^{2}+x^{2}}{r^{2}}
$$

$$
1=\frac{r^{2}}{r^{2}}
$$

$$
1=1
$$

Definition of Trigonometric Functions

If θ is an angle in standard position and if (x, y) is any point on the terminal side of θ such that:
$r=\sqrt{x^{2}+y^{2}}$, then...
Sine $\quad \sin \theta=\frac{y}{r} \quad$ Cosecant $\quad \csc \theta=\frac{r}{y}$
Cosine $\quad \cos \theta=\frac{x}{r} \quad$ Secant $\quad \sec \theta=\frac{r}{x}$
Tangent $\tan \theta=\frac{y}{x}$
Cotangent $\cot \theta=\frac{x}{y}$
Given
Substitute in the definitions of $\sin \theta \& \cos \theta$.
A fraction indicates division, sol rewrote the expression to show this more clearly.

When you divide fractions, you multiply the first fraction by the reciprocal of the second fraction.

After multiplying and simplifying, I have the definition of $\cot \theta$.

Given.

Substitute in the definitions of $\sin \theta \& \cos \theta$.

Simplify.

Add the fractions.
We know that $r^{2}=x^{2}+y^{2}$ so we make this substitution.

