

12-3 Inscribed Angles

TEKS FOCUS

TEKS (12)(A) Apply theorems about circles, including relationships among angles, radii, chords, tangents, and secants, to solve non-contextual problems.

TEKS (1)(G) Display, explain, and **justify** mathematical ideas and **arguments** using precise mathematical language in written or oral communication.

Additional TEKS (1)(D), (5)(A)

ESSENTIAL UNDERSTANDING

VOCABULARY

- Inscribed angle an angle whose vertex is on the circle and whose sides are chords of the circle
- Justify explain with logical reasoning. You can justify a mathematical argument.
- Argument a set of statements put forth to show the truth or falsehood of a mathematical claim

Angles formed by intersecting lines have a special relationship to the arcs the intersecting lines intercept. In this lesson, you will study arcs formed by inscribed angles.

Theorem 12-11 Inscribed Angle Theorem

The measure of an inscribed angle is half the measure of its intercepted arc.

$$m \angle B = \frac{1}{2} m \widehat{AC}$$

You will prove Theorem 12-11 in Exericises 9 and 10.

Corollaries to Theorem 12-11: The Inscribed Angle Theorem

Corollary 2

Corollary 1 Two inscribed angles that intercept the same arc are congruent.

Corollary 2

An angle inscribed in a semicircle is a right angle.

Corollary 3

The opposite angles of a quadrilateral inscribed in a circle are supplementary.

You will prove these corollaries in Exercises 14-16.

Theorem 12-12

The measure of an angle formed by a tangent and a chord is half the measure of the intercepted arc.

You will prove Theorem 12-12 in Exercise 17.

🍫) Problem 1

Plan

find a first.

Which variable should you solve for first? You know the inscribed angle that intercepts \widehat{PT} , which has the measure *a*. You need *a* to find *b*. So Using the Inscribed Angle Theorem

What are the values of *a* and *b*?

$m \angle PQT = \frac{1}{2}m\widehat{PT}$
$60 = \frac{1}{2}a$
120 = a
$m \angle PRS = \frac{1}{2} \widehat{mPS}$
$m \angle PRS = \frac{1}{2} \left(\widehat{mPT} + \widehat{mTS} \right)$
$b = \frac{1}{2}(120 + 30)$
b = 75

Inscribed Angle Theorem Substitute. Multiply each side by 2. Inscribed Angle Theorem Arc Addition Postulate Substitute. Simplify.

TEKS Process Standard (1)(D)

😓 Problem 2

Using Corollaries to Find Angle Measures

What is the measure of each numbered angle?

Think

Is there too much information? Each diagram has more information than you need. Focus on what you need to find.

 $\angle 1$ is inscribed in a semicircle. By Corollary 2, $\angle 1$ is a right angle, so $m \angle 1 = 90$.

 $\angle 2$ and the 38° angle intercept the same arc. By Corollary 1, the angles are congruent, so $m \angle 2 = 38$.