12-4 Angle Measures and Segment Lengths

TEKS FOCUS

TEKS (12)(A) Apply theorems about circles, including relationships among angles, radii, chords, tangents, and secants, to solve non-contextual problems.

TEKS (1)(C) Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and **number sense** as appropriate, to solve problems.

Additional TEKS (1)(D), (1)(F), (5)(A), (6)(A), (6)(D)

ESSENTIAL UNDERSTANDING

e note

- Angles formed by intersecting lines have a special relationship to the related arcs formed when the lines intersect a circle.
- There is a special relationship between two intersecting chords, two intersecting secants, or a secant that intersects a tangent. This relationship allows you to find the lengths of unknown segments.

VOCABULARY

circle at two points

they are related

Secant – a line that intersects a

• Number sense – the understanding

of what numbers mean and how

Theorem 12-13

The measure of an angle formed by two lines that intersect inside a circle is half the sum of the measures of the intercepted arcs.

$$m \angle 1 = \frac{1}{2}(x+y)$$

For a proof of Theorem 12-13, see the Reference section on page 683.

Theorem 12-14

The measure of an angle formed by two lines that intersect outside a circle is half the difference of the measures of the intercepted arcs.

I: angle formed by two secants

II: angle formed by a secant and a tangent

III: angle formed by two tangents

Theorem 12-15

For a given point and circle, the product of the lengths of the two segments from the point to the circle is constant along any line through the point and the circle.

 $(y + z) y = t^2$ You will prove Theorem 12-13 in Exercises 13 and 14.

💎) Problem 1

ke note

I.

TEKS Process Standard (1)(C)

Investigating Special Angles of Circles

Choose from a variety of tools (such as a protractor, a compass, or geometry software) to investigate angles formed by chords intersecting inside a circle. Explain why you chose that tool. Construct a circle and several pairs of intersecting chords. Then make a conjecture about the measure of an angle formed by two chords intersecting inside a circle.

Geometry software could help you investigate angles created by chords. You can create a circle and two chords and then drag the chords around the circle to investigate angle measures and make a conjecture.

- **Step 1** Draw a circle and two chords that intersect in the interior of the circle.

Which angles are formed by the intersection of

the chords in the diagram? ∠CFD, ∠EFB, ∠CFE, and ∠DFB

Think

- **Step 2** Measure angles formed by the intersection of the chords and their intercepted arcs. Record your findings in the table below.
- **Step 3** Drag the chords to form different angles. Record your findings in a table.

Vertical angle measure	65°	41°	81°
Intercepted arc	44°	59 °	30°
Intercepted arc	86°	23°	132°
Sum of arc measures	130°	82°	162°

Conjecture: The measure of an angle formed by two chords that intersect inside a circle is half the sum of the measures of its intercepted arcs.

Finding Angle Measures

Algebra What is the value of each variable?

Think

Remember to add arc measures for arcs intercepted by lines that intersect inside a circle and subtract arc measures for arcs intercepted by lines that intersect outside a circle.

z = 55

Theorem 12-14
Multiply each side by 2.
Solve for z.

Problem 3

Finding an Arc Measure

Satellite A satellite in a geostationary orbit above Earth's equator has a viewing angle of Earth formed by the two tangents to the equator. The viewing angle is about 17.5°. What is the measure of the arc of Earth that is viewed from the satellite?

Think

How can you represent the measures of the arcs? The sum of the measures of the arcs is 360° . If the measure of one arc is *x*, then the measure of the other is 360 - x.

Let $\widehat{mAB} = x$.	
Then $\widehat{mAEB} = 360 - x$.	
$17.5 = \frac{1}{2} \left(\widehat{mAEB} - \widehat{mAB} \right)$	Theorem 12-14
$17.5 = \frac{1}{2}[(360 - x) - x]$	Substitute.
$17.5 = \frac{1}{2} \left(360 - 2x \right)$	Simplify.
17.5 = 180 - x	Distributive Property
x = 162.5	Solve for <i>x</i> .

A 162.5° arc can be viewed from the satellite.

